
3 Multidimensional Versions

The problem of convergence of Fourier Series in several dimensions is more
complicated because there is no natural truncation. If n = {n1, . . . , nd} is a
multi-index, then the sum

∑
n

anein.x

is natuarally computed by summing over finite stes DN which are allowed to
increase to Zd. One tries to recover the function f by

f = lim
N→∞

∑
n∈DN

anein.x (1)

For smooth functions there is no problem because an decays fast. The
degree of smoothness needed gets worse as dimension goes up. In d dimn-
sions we need |an| to decay like |n|−d+δ for some δ > 0 to be sure of uniform
convergence of the Fourier Series. On the other hand the orthogonality rela-
tions imply that in f ∈ L2, the series converges in L2 and again DN can be
arbitrary. However for 1 < p < ∞ but different from 2 the situation is far
from clear.

If we take DN = {n : |nj | ≤ N, j = 1, . . . , d} the partial sum operator we
need to look at is convolution by

[
1

2π

]d ∑
|nj |≤N

j=1,... ,d

ei<n,x> = Πd
j=1

sin(N + 1
2
)xj

2π sin
xj

2

= Πd
j=1tN(xj)

The partial sum operator SN is therefore the product

TN = Πd
j=1T

N
j

where TN
j is the convolution in the variable xj by the kernel tN (xj). It is easy

to see that as operators TN
j have a bound that is uniform in N . The bound in

the context of a single variable extends to d variables because tNj acts only on
the single variable xj . Therefore TN have a uniform bound as well. Therefore
we have with the choice of the cube DN = {n : |nj| ≤ N, j + 1, . . . d}, we
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have convergence in Lp of the partial sums to f , for every f ∈ Lp provided
1 < p < ∞.

It is known that the result is false for any p 6= 2 if we choose DN = {n :
n2

1 + · · ·+ n2
d ≤ N2.

We now look at Fourier Transforms on Rd. If f(x) is a function in L1(R
d)

its Fourier transform f̂(y) is defined by

f̂(y) =

(
1√
2π

)d ∫
Rd

ei <x,y>f(x)dx (2)

We denote by S the class of all functions f on Rd that are infinitely differen-
tiable such that the function and its derivitives of all orders decay faster than
any power, i.e. for every n1, n2, . . . , nd ≥ 0 and k ≥ 0 there are constants
Cn1,n2,... ,nd,k such that

|[( d

dx1

)n1(
d

dx1

)n2 . . . (
d

dxd

)ndf ](x)| ≤ Cn1,n2,··· ,nd,k(1 + ‖x‖)−k

It is easy to show by repeated integration by parts that if f ∈ S so does f̂ .

Theorem 1. The Fourier transform has the inverse

f(x) =

(
1√
2π

)d ∫
Rd

e−i <x,y>f̂(y)dy (3)

proving that the Fourier transform is a one to one mapping of S onto itself.
In addition the Fourier transform extends as a unitary map from L2(R

d)
onto L2(R

d).

Proof. Clearly

g(x) =

(
1√
2π

)d ∫
Rd

e−i <x,y>f̂(y)dy

is well defined as a function in S. We only have to identify it. We compute
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g as

g(x) =

(
1√
2π

)d ∫
Rd

e−i <x,y>f̂(y)dy

= lim
ε→0

(
1√
2π

)d ∫
Rd

e−i <x,y>f̂(y)e−ε
‖y‖2

2 dy

= lim
ε→0

(
1√
2π

)d ∫
Rd

[(
1√
2π

)d ∫
Rd

ei <z,y>f(z)dz

]
e−i <x,y>e−ε

‖y‖2
2 dy

= lim
ε→0

(
1

2π

)d ∫
Rd

∫
Rd

ei <z−x,y>f(z)e−ε
‖y‖2

2 dydz

= lim
ε→0

(
1

2π

)d ∫
Rd

f(z)

[ ∫
Rd

ei <z−x,y>e−ε
‖y‖2

2 dy

]
dz

= lim
ε→0

(
1√
2πε

)d ∫
Rd

f(z)e−
‖z−x‖2

2ε dz

= f(x)

Here we have used the identity

1√
2π

∫
R

ei xye−
x2

2 dx = e−
y2

2

We now turn to the computation of L2 norm of f̂ . We calculate it as

‖f̂‖2
2 = lim

ε→0

∫
Rd

|f̂(y)|2e− ε‖y‖2
2 dy

= lim
ε→0

∫
Rd

∫
Rd

∫
Rd

f(x)f̄(z)ei<x−z,y>e−
ε‖y‖2

2 dydxdz

= lim
ε→0

(
1√
2πε

)d ∫
Rd

∫
Rd

f(x)f̄(z)e−
‖x−z‖2

2ε dxdz

= lim
ε→0

∫
Rd

f(x)[Kεf̄ ](x)dx

=

∫
Rd

|f(x)|2dx
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We see that the Fourier transform is a bounded linear map from L1 to L∞
as well as L2 to L2 with corresponding bounds C = ( 1√

2π
)d and 1. By the

Riesz-Thorin interpolation theorem the Fourier transform is bounded from
Lp into L p

p−1
for 1 ≤ p ≤ 2. If 1

p
= 1.t+ 1

2
(1− t) then 1

2
(1− t) = 1− 1

p
= p−1

p
.

See exercise to show that for f ∈ Lp with p > 2 the Fourier Transform need
not exist.

For convolution operators of the form

(Tf)(x) = (k ∗ f)(x) =

∫
Rd

k(x − y)f(y)dy (4)

we want to estimate ‖T‖p, the operator norm from Lp to Lp for 1 ≤ p ≤ ∞.
As before for p = 1,∞,

‖T‖p =

∫
Rd

|k(y)|dy.

Let us suppose that for some constant C,

1. The Fourier transform k̂(y) of k(·) satisfies

sup
y∈Rd

|k̂(y)| ≤ C < ∞ (5)

2. In addition,

sup
x∈Rd

∫
{y:‖x−y‖≥C‖x‖}

|k(y − x) − k(y)|dy ≤ C < ∞ (6)

We will estimate ‖T‖p in terms of C. The main step is to establish a
weak type (1, 1) inequality. Then we will use the interpolation theorems to
get boundedness in the range 1 < p ≤ 2 and duality to reach the interval
2 ≤ p < ∞.

Theorem 2. The function g(x) = (Tf)(x) = (k ∗f)(x) satisfies a weak type
(1, 1) inequality

µ{x : |g(x)| ≥ `} ≤ C0
‖f‖1

`
(7)

with a constant C0 that depends only on C.
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We first prove a decomposition lemma that we will need for the proof of
the theorem.

Lemma 1. Given any open set G ∈ Rd of finite Lebesgue measure we can
find a countable set of balls {S(xj, rj)} with the following properties. The
balls are all disjoint. G = ∪jS(xj , 2rj) is the countable union of balls with
the same centers but twice the radius. More over each point of G is covered
at most 9d times by the covering G = ∪jS(xj , 2rj). Finally each of the balls
S(xj, 8rj) has a nonempty intersection with Gc.

Basically, the lemma says that it is possible to write G as a nearly disjoint
countable union of balls each having a radius that is comparable to the
distance of the center from the boundary.

Proof. Suppose G is an open set in the plane of finite volume. Let d(x) =
d(x, Gc) be the distance from x to Gc or the boundary of G. Let d0 =
supx∈G d(x). Since the volume of G is finite, G cannot contain any large balls
and consequently d0 cannot be infinite. We consider balls S(x, r(x)) around x

of radius r(x) = d(x)
4

. They are contained in G and provide a covering of G as
x varies over G. All these balls have the property that S(x, 5r(x))intersects
Gc. We select a countable subcover from this covering ∪x∈GS(x, r(x)). We
choose x1 such that d(x1) > d0

2
. Having chosen x1, . . . , xk the choice of xk+1

is made as follows. We consider the balls S(xi, r(xi)) for i = 1, 2, . . . , k.
Look at the set Gk = {x : S(x, r(x)) ∩ S(xi, r(xi)) = ∅ for 1 ≤ i ≤ k} and
define dk = supx∈Gk

d(x). We pick xk+1 ∈ Gk such that d(xk+1) > dk

2
. We

proceed in this fashion to get a countable collection of balls {S(xj , r(xj))}.
By construction, they are disjoint balls contained in the set G of finite volume
and therefore r(xj) → 0 as j → ∞. Since, dj ≤ 2d(xj+1) ≤ 8r(xj+1) it must
also necessarily go to 0 as j → ∞. Every S(xj , 5r(xj)) intersects Gc. We
now worry about how much of G they cover. First we note that G0 ⊃ G1 ⊃
· · · ⊃ Gk ⊃ Gk+1 ⊃ · · · . We claim that ∩kGk = ∅. If not let x ∈ Gk for every
k. Then dk ≥ d(x) > 0 for every k contradicting the convergence of dk to 0.
Since x ∈ G0 = G, we can find k ≥ 1 be such that x /∈ Gk but x ∈ Gk−1.
Then S(x, r(x)) must intersect S(xk, r(xk)) giving us the inequality |x−xk| ≤
r(x) + r(xk) ≤ d(x)

4
+ r(xk) ≤ dk−1

4
+ r(xk) ≤ d(xk)

2
+ r(xk) = 3

2
r(xk). Clearly

S(xk, 2r(xk) will contain x. Since 3
2
r(x) < d(x) the enlarged ball is still within

G. This means G = ∪kS(xk, 2r(xk)). Now we worry about how often a point
x can be covered by {S(xk, 2r(xk)}. Let for some k, |x−xk| ≤ 2r(xk). Then
by the triangle inequality |d(x) − d(xk)| ≤ 2r(xk) = 1

2
d(xk). This implies
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that for the ratio r(x)
r(xk)

= d(x)
d(xk)

we have 1
2
≤ r(x)

r(xk)
≤ 3

2
In particular any ball

S(xj, 2r(xj) that covers x, must have its center with in a distance of 4r(x)
and the corresponding r(xj) must be in the range 2

3
r(x) ≤ r(xj) ≤ 2r(x).

The balls S(xj, r(xj) are then contained in S(x, 6r(x)) are disjoint and have
a radius of atleast 2

3
r(x). There can be atmost 9d of them by considering the

total volume. We can choose our norm in Rd to be maxi |xi| and force the
spheres to be cubes.

Proof of theorem. The proof is similar to the one-dimensional case with some
modifications.

1. We let G` be the open set where the maximal function Mf (x) satisfies
|Mf(x)| > `. From the maximal inequality

µ[G`] ≤ C
‖f‖1

`
(8)

2. We write G` = ∪jBj = ∪jS(xj , 2rj), a countable union of cubes ac-
cording to the lemma.

3. If we let

φ(x) =
∑

j

1Bj
(x)

then 1 ≤ φ(x) ≤ 9d on G`.

4. Let us define a weighted average mj of f(y) on Bj by∫
Bj

[f(y) − mj ]
dy

φ(y)
= 0 (9)

and write

f(x) = f(x)1Gc
`
(x) +

1

φ(x)

∑
j

f(x)1Bj
(x)

= f(x)1Gc
`
(x) +

1

φ(x)

∑
j

mj1Bj
(x) +

1

φ(x)

∑
j

[f(x) − mj ]1Bj
(x)

= h0(x) +
∑

j

hj(x) (10)
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5. For any cube Bj with center xj there is a cube with 4 times its size and
with the same center that contains a point x′

j ∈ Gc
` with |Mf (x

′
j)| ≤

`. The cube S(x′
j , 10rj) contains Bj . Therefore with some constant

depending only on the dimension

|mj | ≤ Cd` (11)

Moreover on Gc
`, |f(x)| ≤ Mf(x) ≤ `. Hence

‖h0‖∞ ≤ ` + Cd` = (Cd + 1)` (12)

On the other hand

‖h0‖1 ≤ ‖f‖1 + Cd`
∑

j

µ[Bj]

≤ ‖f‖1 + C2
d`µ[G`]

≤ (1 + CC2
d)‖f‖1 (13)

and therefore

‖h0‖2
2 ≤ (Cd + 1)`‖h0‖1 ≤ C1`‖f‖1 (14)

From the boundedness of T from L2 to L2 this gives

µ{x : |(Th0)(x)| ≥ `} ≤ C2
‖f‖1

`
(15)

6. We now turn our attention to the functions {hj}

w = T [
∑

j

hj ] =
∑

j

∫
Bj

[f(y) − mj ]k(x − y)
dy

φ(y)

=
∑

j

∫
Bj

[f(y) − mj ][k(x − y) − k(x − xj)]
dy

φ(y)

≤
∑

j

∫
Bj

|f(y)− mj ||k(x − y) − k(x − xj)|dy (16)

We estimate |w(x)| for x /∈ ∪jUj where Uj is the cube with the same
center xj as Bj but enlarged by a factor C + 1. In particular if y ∈ Bj
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and x ∈ U c
j , then |y − x| ≥ |x − xj | − |y − xj | ≥ C|y − xj |.

∫
∩jUc

j

|w(x)|dx ≤
∑

j

∫
∩jUc

j

[

∫
Bj

|f(y) − mj||k(x − y) − k(x − xj)|dy]dx

≤
∑

j

∫
Bj

|f(y) − mj|[
∫

Ej

|k(x − y) − k(x − xj)|dx]dy

(17)

where Ej ⊂ {x : |x − y| ≥ C|y − xj |}. Therefore,

∫
Ej

|k(x − y) − k(x − xj)|dx

≤ sup
y,j

∫
{x:|x−y|≥C|y−xj|}

|k(x − y) − k(x − xj)|dx

≤ sup
y

∫
{x:|x−y|≥C|y|}

|k(x − y) − k(x)|dx

≤ C (18)

giving us the estimate

∫
∩jUc

j

|w(x)|dx ≤ C
∑

j

∫
Bj

|f(y) − mj|dy

≤ C(‖f‖1 + [sup
j

mj ]
∑

j

µ[Bj])

≤ C1‖f‖1 (19)

7. We put the pieces together and we are done.
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