3 Multidimensional Versions

The problem of convergence of Fourier Series in several dimensions is more complicated because there is no natural truncation. If $n = \{n_1, \ldots, n_d\}$ is a multi-index, then the sum

$$\sum_{n} a_n e^{in.x}$$

is naturally computed by summing over finite stes D_N which are allowed to increase to Z^d . One tries to recover the function f by

$$f = \lim_{N \to \infty} \sum_{n \in D_N} a_n e^{in.x} \tag{1}$$

For smooth functions there is no problem because a_n decays fast. The degree of smoothness needed gets worse as dimension goes up. In d dimnsions we need $|a_n|$ to decay like $|n|^{-d+\delta}$ for some $\delta > 0$ to be sure of uniform convergence of the Fourier Series. On the other hand the orthogonality relations imply that in $f \in L_2$, the series converges in L_2 and again D_N can be arbitrary. However for 1 but different from 2 the situation is far from clear.

If we take $D_N = \{n : |n_j| \le N, j = 1, ..., d\}$ the partial sum operator we need to look at is convolution by

$$\left[\frac{1}{2\pi}\right]^{d} \sum_{\substack{|n_{j}| \leq N\\ j=1,\dots,d}} e^{i < n, x >} = \prod_{j=1}^{d} \frac{\sin(N + \frac{1}{2})x_{j}}{2\pi \sin\frac{x_{j}}{2}}$$
$$= \prod_{j=1}^{d} t_{N}(x_{j})$$

The partial sum operator S_N is therefore the product

$$T^N = \prod_{j=1}^d T_j^N$$

where T_j^N is the convolution in the variable x_j by the kernel $t_N(x_j)$. It is easy to see that as operators T_j^N have a bound that is uniform in N. The bound in the context of a single variable extends to d variables because t_j^N acts only on the single variable x_j . Therefore T_N have a uniform bound as well. Therefore we have with the choice of the cube $D_N = \{n : |n_j| \leq N, j+1, \ldots d\}$, we have convergence in L_p of the partial sums to f, for every $f \in L_p$ provided 1 .

It is known that the result is false for any $p \neq 2$ if we choose $D_N = \{n : n_1^2 + \dots + n_d^2 \leq N^2\}$.

We now look at Fourier Transforms on \mathbb{R}^d . If f(x) is a function in $L_1(\mathbb{R}^d)$ its Fourier transform $\hat{f}(y)$ is defined by

$$\hat{f}(y) = \left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{R^d} e^{i\langle x,y\rangle} f(x)dx \tag{2}$$

We denote by S the class of all functions f on \mathbb{R}^d that are infinitely differentiable such that the function and its derivitives of all orders decay faster than any power, i.e. for every $n_1, n_2, \ldots, n_d \geq 0$ and $k \geq 0$ there are constants $C_{n_1,n_2,\ldots,n_d,k}$ such that

$$\left|\left[\left(\frac{d}{dx_1}\right)^{n_1}\left(\frac{d}{dx_1}\right)^{n_2}\dots\left(\frac{d}{dx_d}\right)^{n_d}f\right](x)\right| \le C_{n_1,n_2,\dots,n_d,k}(1+\|x\|)^{-k}$$

It is easy to show by repeated integration by parts that if $f \in S$ so does \hat{f} .

Theorem 1. The Fourier transform has the inverse

$$f(x) = \left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{\mathbb{R}^d} e^{-i\langle x,y\rangle} \hat{f}(y) dy \tag{3}$$

proving that the Fourier transform is a one to one mapping of S onto itself. In addition the Fourier transform extends as a unitary map from $L_2(\mathbb{R}^d)$ onto $L_2(\mathbb{R}^d)$.

Proof. Clearly

$$g(x) = \left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{R^d} e^{-i\langle x,y\rangle} \hat{f}(y) dy$$

is well defined as a function in \mathcal{S} . We only have to identify it. We compute

 \boldsymbol{g} as

$$\begin{split} g(x) &= \left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{R^d} e^{-i \langle x, y \rangle} \hat{f}(y) dy \\ &= \lim_{\epsilon \to 0} \left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{R^d} e^{-i \langle x, y \rangle} \hat{f}(y) e^{-\epsilon \frac{\|y\|^2}{2}} dy \\ &= \lim_{\epsilon \to 0} \left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{R^d} \left[\left(\frac{1}{\sqrt{2\pi}}\right)^d \int_{R^d} e^{i \langle z, y \rangle} f(z) dz \right] e^{-i \langle x, y \rangle} e^{-\epsilon \frac{\|y\|^2}{2}} dy \\ &= \lim_{\epsilon \to 0} \left(\frac{1}{2\pi}\right)^d \int_{R^d} \int_{R^d} e^{i \langle z-x, y \rangle} f(z) e^{-\epsilon \frac{\|y\|^2}{2}} dy dz \\ &= \lim_{\epsilon \to 0} \left(\frac{1}{2\pi}\right)^d \int_{R^d} f(z) \left[\int_{R^d} e^{i \langle z-x, y \rangle} e^{-\epsilon \frac{\|y\|^2}{2}} dy \right] dz \\ &= \lim_{\epsilon \to 0} \left(\frac{1}{\sqrt{2\pi\epsilon}}\right)^d \int_{R^d} f(z) e^{-\frac{\|z-x\|^2}{2\epsilon}} dz \\ &= f(x) \end{split}$$

Here we have used the identity

$$\frac{1}{\sqrt{2\pi}} \int_{R} e^{i\,xy} e^{-\frac{x^2}{2}} dx = e^{-\frac{y^2}{2}}$$

We now turn to the computation of L_2 norm of \hat{f} . We calculate it as

$$\begin{split} \|\hat{f}\|_{2}^{2} &= \lim_{\epsilon \to 0} \int_{R_{d}} |\hat{f}(y)|^{2} e^{-\frac{\epsilon \|y\|^{2}}{2}} dy \\ &= \lim_{\epsilon \to 0} \int_{R_{d}} \int_{R_{d}} \int_{R_{d}} f(x) \bar{f}(z) e^{i \langle x-z,y \rangle} e^{-\frac{\epsilon \|y\|^{2}}{2}} dy dx dz \\ &= \lim_{\epsilon \to 0} \left(\frac{1}{\sqrt{2\pi\epsilon}} \right)^{d} \int_{R_{d}} \int_{R_{d}} f(x) \bar{f}(z) e^{-\frac{\|x-z\|^{2}}{2\epsilon}} dx dz \\ &= \lim_{\epsilon \to 0} \int_{R^{d}} f(x) [K_{\epsilon} \bar{f}](x) dx \\ &= \int_{R^{d}} |f(x)|^{2} dx \end{split}$$

We see that the Fourier transform is a bounded linear map from L_1 to L_{∞} as well as L_2 to L_2 with corresponding bounds $C = (\frac{1}{\sqrt{2\pi}})^d$ and 1. By the Riesz-Thorin interpolation theorem the Fourier transform is bounded from L_p into $L_{\frac{p}{p-1}}$ for $1 \le p \le 2$. If $\frac{1}{p} = 1.t + \frac{1}{2}(1-t)$ then $\frac{1}{2}(1-t) = 1 - \frac{1}{p} = \frac{p-1}{p}$. See exercise to show that for $f \in L_p$ with p > 2 the Fourier Transform need not exist.

For convolution operators of the form

$$(Tf)(x) = (k * f)(x) = \int_{R^d} k(x - y)f(y)dy$$
 (4)

we want to estimate $||T||_p$, the operator norm from L_p to L_p for $1 \le p \le \infty$. As before for $p = 1, \infty$,

$$||T||_p = \int_{R^d} |k(y)| dy$$

Let us suppose that for some constant C,

1. The Fourier transform $\hat{k}(y)$ of $k(\cdot)$ satisfies

$$\sup_{y \in R^d} |\hat{k}(y)| \le C < \infty \tag{5}$$

2. In addition,

$$\sup_{x \in R^d} \int_{\{y: \|x-y\| \ge C \|x\|\}} |k(y-x) - k(y)| dy \le C < \infty$$
(6)

We will estimate $||T||_p$ in terms of C. The main step is to establish a weak type (1, 1) inequality. Then we will use the interpolation theorems to get boundedness in the range $1 and duality to reach the interval <math>2 \leq p < \infty$.

Theorem 2. The function g(x) = (Tf)(x) = (k * f)(x) satisfies a weak type (1, 1) inequality

$$\mu\{x: |g(x)| \ge \ell\} \le C_0 \frac{\|f\|_1}{\ell} \tag{7}$$

with a constant C_0 that depends only on C.

We first prove a decomposition lemma that we will need for the proof of the theorem.

Lemma 1. Given any open set $G \in \mathbb{R}^d$ of finite Lebesgue measure we can find a countable set of balls $\{S(x_j, r_j)\}$ with the following properties. The balls are all disjoint. $G = \bigcup_j S(x_j, 2r_j)$ is the countable union of balls with the same centers but twice the radius. More over each point of G is covered at most 9^d times by the covering $G = \bigcup_j S(x_j, 2r_j)$. Finally each of the balls $S(x_j, 8r_j)$ has a nonempty intersection with G^c .

Basically, the lemma says that it is possible to write G as a nearly disjoint countable union of balls each having a radius that is comparable to the distance of the center from the boundary.

Proof. Suppose G is an open set in the plane of finite volume. Let d(x) = $d(x, G^c)$ be the distance from x to G^c or the boundary of G. Let $d_0 =$ $\sup_{x \in G} d(x)$. Since the volume of G is finite, G cannot contain any large balls and consequently d_0 cannot be infinite. We consider balls S(x, r(x)) around x of radius $r(x) = \frac{d(x)}{4}$. They are contained in G and provide a covering of G as x varies over G. All these balls have the property that S(x, 5r(x)) intersects G^c . We select a countable subcover from this covering $\bigcup_{x \in G} S(x, r(x))$. We choose x_1 such that $d(x_1) > \frac{d_0}{2}$. Having chosen x_1, \ldots, x_k the choice of x_{k+1} is made as follows. We consider the balls $S(x_i, r(x_i))$ for $i = 1, 2, \ldots, k$. Look at the set $G_k = \{x : S(x, r(x)) \cap S(x_i, r(x_i)) = \emptyset \text{ for } 1 \le i \le k\}$ and define $d_k = \sup_{x \in G_k} d(x)$. We pick $x_{k+1} \in G_k$ such that $d(x_{k+1}) > \frac{d_k}{2}$. We proceed in this fashion to get a countable collection of balls $\{S(x_i, r(x_i))\}$. By construction, they are disjoint balls contained in the set G of finite volume and therefore $r(x_j) \to 0$ as $j \to \infty$. Since, $d_j \leq 2d(x_{j+1}) \leq 8r(x_{j+1})$ it must also necessarily go to 0 as $j \to \infty$. Every $S(x_i, 5r(x_i))$ intersects G^c . We now worry about how much of G they cover. First we note that $G_0 \supset G_1 \supset$ $\cdots \supset G_k \supset G_{k+1} \supset \cdots$. We claim that $\cap_k G_k = \emptyset$. If not let $x \in G_k$ for every k. Then $d_k \ge d(x) > 0$ for every k contradicting the convergence of d_k to 0. Since $x \in G_0 = G$, we can find $k \ge 1$ be such that $x \notin G_k$ but $x \in G_{k-1}$. Then S(x, r(x)) must intersect $S(x_k, r(x_k))$ giving us the inequality $|x - x_k| \le r(x) + r(x_k) \le \frac{d(x)}{4} + r(x_k) \le \frac{d_{k-1}}{4} + r(x_k) \le \frac{d(x_k)}{2} + r(x_k) = \frac{3}{2}r(x_k)$. Clearly $S(x_k, 2r(x_k))$ will contain x. Since $\frac{3}{2}r(x) < d(x)$ the enlarged ball is still within G. This means $G = \bigcup_k S(x_k, 2r(x_k))$. Now we worry about how often a point x can be covered by $\{S(x_k, 2r(x_k))\}$. Let for some $k, |x - x_k| \leq 2r(x_k)$. Then by the triangle inequality $|d(x) - d(x_k)| \leq 2r(x_k) = \frac{1}{2}d(x_k)$. This implies

that for the ratio $\frac{r(x)}{r(x_k)} = \frac{d(x)}{d(x_k)}$ we have $\frac{1}{2} \leq \frac{r(x)}{r(x_k)} \leq \frac{3}{2}$ In particular any ball $S(x_j, 2r(x_j))$ that covers x, must have its center with in a distance of 4r(x) and the corresponding $r(x_j)$ must be in the range $\frac{2}{3}r(x) \leq r(x_j) \leq 2r(x)$. The balls $S(x_j, r(x_j))$ are then contained in S(x, 6r(x)) are disjoint and have a radius of atleast $\frac{2}{3}r(x)$. There can be atmost 9^d of them by considering the total volume. We can choose our norm in R^d to be $\max_i |x_i|$ and force the spheres to be cubes.

Proof of theorem. The proof is similar to the one-dimensional case with some modifications.

1. We let G_{ℓ} be the open set where the maximal function $M_f(x)$ satisfies $|M_f(x)| > \ell$. From the maximal inequality

$$\mu[G_{\ell}] \le C \frac{\|f\|_1}{\ell} \tag{8}$$

- 2. We write $G_{\ell} = \bigcup_{j} B_{j} = \bigcup_{j} S(x_{j}, 2r_{j})$, a countable union of cubes according to the lemma.
- 3. If we let

$$\phi(x) = \sum_{j} \mathbf{1}_{B_j}(x)$$

then $1 \le \phi(x) \le 9^d$ on G_ℓ .

4. Let us define a weighted average m_j of f(y) on B_j by

$$\int_{B_j} [f(y) - m_j] \frac{dy}{\phi(y)} = 0$$
(9)

and write

$$f(x) = f(x)\mathbf{1}_{G_{\ell}^{c}}(x) + \frac{1}{\phi(x)}\sum_{j}f(x)\mathbf{1}_{B_{j}}(x)$$

= $f(x)\mathbf{1}_{G_{\ell}^{c}}(x) + \frac{1}{\phi(x)}\sum_{j}m_{j}\mathbf{1}_{B_{j}}(x) + \frac{1}{\phi(x)}\sum_{j}[f(x) - m_{j}]\mathbf{1}_{B_{j}}(x)$
= $h_{0}(x) + \sum_{j}h_{j}(x)$ (10)

5. For any cube B_j with center x_j there is a cube with 4 times its size and with the same center that contains a point $x'_j \in G^c_\ell$ with $|M_f(x'_j)| \leq \ell$. The cube $S(x'_j, 10r_j)$ contains B_j . Therefore with some constant depending only on the dimension

$$|m_j| \le C_d \ell \tag{11}$$

Moreover on G_{ℓ}^c , $|f(x)| \leq M_f(x) \leq \ell$. Hence

$$\|h_0\|_{\infty} \le \ell + C_d \ell = (C_d + 1)\ell \tag{12}$$

On the other hand

$$|h_0||_1 \le ||f||_1 + C_d \ell \sum_j \mu[B_j]$$

$$\le ||f||_1 + C_d^2 \ell \mu[G_\ell]$$

$$\le (1 + CC_d^2) ||f||_1$$
(13)

and therefore

$$\|h_0\|_2^2 \le (C_d + 1)\ell \|h_0\|_1 \le C_1\ell \|f\|_1$$
(14)

From the boundedness of T from L_2 to L_2 this gives

$$\mu\{x: |(Th_0)(x)| \ge \ell\} \le C_2 \frac{\|f\|_1}{\ell}$$
(15)

6. We now turn our attention to the functions $\{h_j\}$

$$w = T[\sum_{j} h_{j}] = \sum_{j} \int_{B_{j}} [f(y) - m_{j}]k(x - y)\frac{dy}{\phi(y)}$$

$$= \sum_{j} \int_{B_{j}} [f(y) - m_{j}][k(x - y) - k(x - x_{j})]\frac{dy}{\phi(y)}$$

$$\leq \sum_{j} \int_{B_{j}} |f(y) - m_{j}||k(x - y) - k(x - x_{j})|dy$$
(16)

We estimate |w(x)| for $x \notin \bigcup_j U_j$ where U_j is the cube with the same center x_j as B_j but enlarged by a factor C + 1. In particular if $y \in B_j$

and
$$x \in U_{j}^{c}$$
, then $|y - x| \ge |x - x_{j}| - |y - x_{j}| \ge C|y - x_{j}|$.

$$\int_{\cap_{j}U_{j}^{c}} |w(x)|dx \le \sum_{j} \int_{\cap_{j}U_{j}^{c}} [\int_{B_{j}} |f(y) - m_{j}||k(x - y) - k(x - x_{j})|dy]dx$$

$$\le \sum_{j} \int_{B_{j}} |f(y) - m_{j}| [\int_{E_{j}} |k(x - y) - k(x - x_{j})|dx]dy$$
(17)

where $E_j \subset \{x : |x - y| \ge C|y - x_j|\}$. Therefore,

$$\int_{E_{j}} |k(x-y) - k(x-x_{j})| dx
\leq \sup_{y,j} \int_{\{x:|x-y| \ge C|y-x_{j}|\}} |k(x-y) - k(x-x_{j})| dx
\leq \sup_{y} \int_{\{x:|x-y| \ge C|y|\}} |k(x-y) - k(x)| dx
\leq C$$
(18)

giving us the estimate

$$\int_{\bigcap_{j} U_{j}^{c}} |w(x)| dx \leq C \sum_{j} \int_{B_{j}} |f(y) - m_{j}| dy$$
$$\leq C(\|f\|_{1} + [\sup_{j} m_{j}] \sum_{j} \mu[B_{j}])$$
$$\leq C_{1} \|f\|_{1}$$
(19)

7. We put the pieces together and we are done.