3 Multidimensional Versions

The problem of convergence of Fourier Series in several dimensions is more
complicated because there is no natural truncation. If n = {ny,... ,n4} is a
multi-index, then the sum

§ anelnl?

n

is natuarally computed by summing over finite stes Dy which are allowed to
increase to Z%. One tries to recover the function f by

= lim ane™” 1
f N—oo neZDN n ( )
For smooth functions there is no problem because a, decays fast. The
degree of smoothness needed gets worse as dimension goes up. In d dimn-
sions we need |a,| to decay like |n|~%+? for some § > 0 to be sure of uniform
convergence of the Fourier Series. On the other hand the orthogonality rela-
tions imply that in f € Lo, the series converges in Ly and again Dy can be
arbitrary. However for 1 < p < oo but different from 2 the situation is far
from clear.
If we take Dy = {n: |n;| < N,j =1,...,d} the partial sum operator we
need to look at is convolution by

d .
[i] 3 enes —qpe_ SV 2

= H?:ltN (z5)
The partial sum operator Sy is therefore the product
N _ pqd N
" =171

where TV is the convolution in the variable z; by the kernel tx(x;). It is easy
to see that as operators TjN have a bound that is uniform in N. The bound in
the context of a single variable extends to d variables because tj-v acts only on
the single variable ;. Therefore Ty have a uniform bound as well. Therefore
we have with the choice of the cube Dy = {n : |n;| < N,j +1,...d}, we
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have convergence in L, of the partial sums to f, for every f € L, provided
1 <p<oo.

It is known that the result is false for any p # 2 if we choose Dy = {n :
ni+---+n3 < N2

We now look at Fourier Transforms on R, If f(z) is a function in L;(R?)
its Fourier transform f (y) is defined by

i = () [ e )

We denote by S the class of all functions f on R that are infinitely differen-
tiable such that the function and its derivitives of all orders decay faster than

any power, i.e. for every nq,ns,...,ng > 0 and k£ > 0 there are constants
Cnl,n27,,,7nd7k SuCh that

Ly Ly (L

" Y < Cn no,---,n ]- + ||z —k
dzq dxy dl'd) f]( )| = Yning, -, d,k( H H)
It is easy to show by repeated integration by parts that if f € S so does f.

Theorem 1. The Fourier transform has the inverse

1w = (o) [ i )

proving that the Fourier transform is a one to one mapping of S onto itself.
In addition the Fourier transform extends as a unitary map from Lo(R?)
onto Ly(RY).

Proof. Clearly

g(x) = (\/%—W)d/m e = f(y)dy

is well defined as a function in S. We only have to identify it. We compute
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Here we have used the identity

2 2
. , ”
o= T dy = e T

: /
— [ e
V21 JR
We now turn to the computation of Ly norm of f . We calculate it as

; . A _elwl®
113 =tim [ |Fw)Pe dy
=0 JR,

e—0

1 d - llz—=))
= lim z)f(2)e” 2 dxdz
HO( TWE) / RIS
—tiny [ f@IK.f (o)
Rd

= [ 1r@pPs

= lim/ / f(x)f(z)eiq*z’we’E“g“ dydzdz
Ry J R4 J Ry
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We see that the Fourier transform is a bounded linear map from L; to L.,
as well as Ly to Ly with corresponding bounds C' = (\/LQ—ﬁ)d and 1. By the
Riesz-Thorin interpolation theorem the Fourier transform is bounded from
Lyinto L p for 1 <p <2. If 5 = 1Lt+5(1—t) then 3(1—t) =1— = e
See exercise to show that for f € L, with p > 2 the Fourier Transform need
not exist.

For convolution operators of the form

(TF)() = (k# f)(x) = / k(e — ) f(y)dy (4)

Rd

we want to estimate ||7'||,, the operator norm from L, to L, for 1 <p < co.
As before for p =1, oo,

7l = | |kl

Let us suppose that for some constant C,

1. The Fourier transform k(y) of k(-) satisfies

sup |k(y)| < C < oo (5)
yER4
2. In addition,
sup / k(y — ) — k(y)ldy < C < o (6)
zeR J{y:||z—y||>C||z||}

We will estimate ||T]|, in terms of C. The main step is to establish a
weak type (1,1) inequality. Then we will use the interpolation theorems to
get boundedness in the range 1 < p < 2 and duality to reach the interval
2<p< 0.

Theorem 2. The function g(z) = (T'f)(x) = (k* f)(z) satisfies a weak type
(1,1) inequality

ple lo(@)| 2 0) < 1211 7

with a constant Cy that depends only on C.
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We first prove a decomposition lemma that we will need for the proof of
the theorem.

Lemma 1. Given any open set G € R® of finite Lebesque measure we can
find a countable set of balls {S(xj,7;)} with the following properties. The
balls are all disjoint. G = U;S(x;,2r;) is the countable union of balls with
the same centers but twice the radius. More over each point of G is covered
at most 9% times by the covering G = U;S(z;,2r;). Finally each of the balls
S(x;,8r;) has a nonempty intersection with G.

Basically, the lemma says that it is possible to write GG as a nearly disjoint
countable union of balls each having a radius that is comparable to the
distance of the center from the boundary.

Proof. Suppose G is an open set in the plane of finite volume. Let d(z) =
d(x,G°) be the distance from = to G° or the boundary of G. Let dy =
Sup,cc d(z). Since the volume of G is finite, G cannot contain any large balls
and consequently dy cannot be infinite. We consider balls S(x, r(z)) around x
of radius r(z) = @. They are contained in G' and provide a covering of G as
x varies over G. All these balls have the property that S(z, 5r(x))intersects
G°. We select a countable subcover from this covering U,eqS(z, 7(z)). We
choose 7 such that d(z;) > d2—°. Having chosen z1, ..., z) the choice of x4
is made as follows. We consider the balls S(z;,7(z;)) for ¢ = 1,2,... k.
Look at the set Gy = {z : S(x,r(x)) N S(zs,r(z;)) = 0 for 1 < i < k} and
define di, = sup,cq, d(x). We pick x441 € Gy such that d(wp41) > L We
proceed in this fashion to get a countable collection of balls {S(x;,7(x;))}.
By construction, they are disjoint balls contained in the set G of finite volume
and therefore r(x;) — 0 as j — oo. Since, d; < 2d(z;41) < 8r(z;41) it must
also necessarily go to 0 as j — oco. Every S(z;,5r(x;)) intersects G¢. We
now worry about how much of G they cover. First we note that Go D G1 D
D G D Giy1 D -+ -. We claim that NGy, = 0. If not let x € Gy, for every
k. Then dj, > d(x) > 0 for every k contradicting the convergence of dj, to 0.
Since z € Gy = G, we can find £ > 1 be such that z ¢ Gy but x € Gy_;.
Then S(x,r(x)) must intersect S(zx, r(xx)) giving us the inequality |x—xz)| <
r(x) +rzy) < @ + () < dkf +7(zg) < @ + r(xzy) = 3r(x). Clearly
S(x, 2r(zx) will contain z. Since 3r(z) < d(z) the enlarged ball is still within
G. This means G' = U S(zg, 2r(zx)). Now we worry about how often a point
x can be covered by {S(xy, 2r(zg)}. Let for some k, |x — x| < 2r(zy). Then
by the triangle inequality |d(z) — d(zx)| < 2r(z) = 1d(xy). This implies
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that for the ratio :(;k)) = dd(fk)) we have 3 < rT(E:k)) < 2 In particular any ball
S(x;,2r(x;) that covers z, must have its center with in a distance of 4r(z)
and the corresponding r(z;) must be in the range 2r(z) < r(z;) < 2r(z).
The balls S(z;,r(z;) are then contained in S(x,6r(x)) are disjoint and have
a radius of atleast %r(x) There can be atmost 9 of them by considering the
total volume. We can choose our norm in R? to be max; |z;| and force the

spheres to be cubes.

O

Proof of theorem. The proof is similar to the one-dimensional case with some
modifications.

1. We let Gy be the open set where the maximal function M(x) satisfies
|M¢(z)| > £. From the maximal inequality

uic < 1l ®)

2. We write Gy = U;B; = U;S(x;,2r;), a countable union of cubes ac-
cording to the lemma.

3. If we let

then 1 < ¢(x) < 9% on Gy.

4. Let us define a weighted average m; of f(y) on B, by

/B ) — my] -2 — 0 (9)

) o(y)
and write
1
f(@) = f(z)lgs () + ) ; f(@)1p, ()
1 1
f(x)lgs () + o) zj:mlej (x) + o) zj:[f(w) —m;|1p,(x)
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5. For any cube B; with center x; there is a cube with 4 times its size and
with the same center that contains a point z); € G7 with [M;(a2%)| <
(. The cube S(x%,10r;) contains Bj. Therefore with some constant
depending only on the dimension

Im;| < Cat (11)
Moreover on Gf, |f(z)| < My(x) < (. Hence
|o]|loo S L+ Cal = (Cq+ 1)¢ (12)
On the other hand

holly < [1£1l + Cat > plB))

J

< |[fll + Coen[G]
< (1+CChH| £l (13)
and therefore
Iholl3 < (Ca+ 1)e||holly < C1e £l (14)

From the boundedness of T' from Ly to Ls this gives

ple |(Tho)@)| 2 0} < 111 (15)

6. We now turn our attention to the functions {h;}

w=T(Cm =% [ 1) = milkte =)
Ay
¢(y)

<3 [ 1w - mllke =) ~ka—alay (16)

_ Z/B'[f(y) —m|lk(z — y) — k(z — ;)]

We estimate |w(z)| for x ¢ U;U; where U; is the cube with the same
center x; as B; but enlarged by a factor C'+ 1. In particular if y € B;
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and x € US, then |y — x| > |z — x5 — |y — ;| = Cly — z].
[ w@lde <3 [ (] 15 - millkte ) - Ko - 2,) dyido
ﬂjU; j ﬂjU;‘ B

<3 [ 1w =mll [ ke =) ko - ) dsldy

(17)
where E; C {z : |z —y| > Cly — z;|}. Therefore,
[ Wbl =)~ ko - 2,)ldz
E;
< sup/ |k(x —y) — k(x — z;)|dz
v Hz:|z—y|>Cly—=;[}
<sup | Kz —y) — k(@)lda
Y JH{a:le—y[=Clyl}
<C (18)
giving us the estimate
[ @i [ 15w - mldy
ﬂjU]‘; j B;j
< C(Ifllh + [supmy) Y ulBy)
] .
J
< Gl flh (19)
7. We put the pieces together and we are done.
U
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