3 Multidimensional Versions

The problem of convergence of Fourier Series in several dimensions is more complicated because there is no natural truncation. If $n=\left\{n_{1}, \ldots, n_{d}\right\}$ is a multi-index, then the sum

$$
\sum_{n} a_{n} e^{i n . x}
$$

is natuarally computed by summing over finite stes D_{N} which are allowed to increase to Z^{d}. One tries to recover the function f by

$$
\begin{equation*}
f=\lim _{N \rightarrow \infty} \sum_{n \in D_{N}} a_{n} e^{i n . x} \tag{1}
\end{equation*}
$$

For smooth functions there is no problem because a_{n} decays fast. The degree of smoothness needed gets worse as dimension goes up. In d dimnsions we need $\left|a_{n}\right|$ to decay like $|n|^{-d+\delta}$ for some $\delta>0$ to be sure of uniform convergence of the Fourier Series. On the other hand the orthogonality relations imply that in $f \in L_{2}$, the series converges in L_{2} and again D_{N} can be arbitrary. However for $1<p<\infty$ but different from 2 the situation is far from clear.

If we take $D_{N}=\left\{n:\left|n_{j}\right| \leq N, j=1, \ldots, d\right\}$ the partial sum operator we need to look at is convolution by

$$
\begin{aligned}
{\left[\frac{1}{2 \pi}\right]^{d} \sum_{\substack{\left|n_{j}\right| \leq N \\
j=1, \ldots, d}} e^{i<n, x>} } & =\Pi_{j=1}^{d} \frac{\sin \left(N+\frac{1}{2}\right) x_{j}}{2 \pi \sin \frac{x_{j}}{2}} \\
& =\Pi_{j=1}^{d} t_{N}\left(x_{j}\right)
\end{aligned}
$$

The partial sum operator S_{N} is therefore the product

$$
T^{N}=\Pi_{j=1}^{d} T_{j}^{N}
$$

where T_{j}^{N} is the convolution in the variable x_{j} by the kernel $t_{N}\left(x_{j}\right)$. It is easy to see that as operators T_{j}^{N} have a bound that is uniform in N. The bound in the context of a single variable extends to d variables because t_{j}^{N} acts only on the single variable x_{j}. Therefore T_{N} have a uniform bound as well. Therefore we have with the choice of the cube $D_{N}=\left\{n:\left|n_{j}\right| \leq N, j+1, \ldots d\right\}$, we
have convergence in L_{p} of the partial sums to f, for every $f \in L_{p}$ provided $1<p<\infty$.

It is known that the result is false for any $p \neq 2$ if we choose $D_{N}=\{n$: $n_{1}^{2}+\cdots+n_{d}^{2} \leq N^{2}$.

We now look at Fourier Transforms on R^{d}. If $f(x)$ is a function in $L_{1}\left(R^{d}\right)$ its Fourier transform $\hat{f}(y)$ is defined by

$$
\begin{equation*}
\hat{f}(y)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{i<x, y>} f(x) d x \tag{2}
\end{equation*}
$$

We denote by \mathcal{S} the class of all functions f on R^{d} that are infinitely differentiable such that the function and its derivitives of all orders decay faster than any power, i.e. for every $n_{1}, n_{2}, \ldots, n_{d} \geq 0$ and $k \geq 0$ there are constants $C_{n_{1}, n_{2}, \ldots, n_{d}, k}$ such that

$$
\left|\left[\left(\frac{d}{d x_{1}}\right)^{n_{1}}\left(\frac{d}{d x_{1}}\right)^{n_{2}} \cdots\left(\frac{d}{d x_{d}}\right)^{n_{d}} f\right](x)\right| \leq C_{n_{1}, n_{2}, \cdots, n_{d}, k}(1+\|x\|)^{-k}
$$

It is easy to show by repeated integration by parts that if $f \in \mathcal{S}$ so does \hat{f}.
Theorem 1. The Fourier transform has the inverse

$$
\begin{equation*}
f(x)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-i<x, y>} \hat{f}(y) d y \tag{3}
\end{equation*}
$$

proving that the Fourier transform is a one to one mapping of \mathcal{S} onto itself.
In addition the Fourier transform extends as a unitary map from $L_{2}\left(R^{d}\right)$ onto $L_{2}\left(R^{d}\right)$.

Proof. Clearly

$$
g(x)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-i<x, y>} \hat{f}(y) d y
$$

is well defined as a function in \mathcal{S}. We only have to identify it. We compute
g as

$$
\begin{aligned}
g(x) & =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-i<x, y>} \hat{f}(y) d y \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-i<x, y>} \hat{f}(y) e^{-\epsilon \frac{\|y\|^{2}}{2}} d y \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}}\left[\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{i<z, y>} f(z) d z\right] e^{-i<x, y>} e^{-\epsilon \frac{\|y\|^{2}}{2}} d y \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{2 \pi}\right)^{d} \int_{R^{d}} \int_{R^{d}} e^{i<z-x, y>} f(z) e^{-\epsilon \frac{\|y\|^{2}}{2}} d y d z \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{2 \pi}\right)^{d} \int_{R^{d}} f(z)\left[\int_{R^{d}} e^{i<z-x, y>} e^{-\epsilon \frac{\|y\|^{2}}{2}} d y\right] d z \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\sqrt{2 \pi \epsilon}}\right)^{d} \int_{R^{d}} f(z) e^{-\frac{\|z-x\|^{2}}{2 \epsilon}} d z \\
& =f(x)
\end{aligned}
$$

Here we have used the identity

$$
\frac{1}{\sqrt{2 \pi}} \int_{R} e^{i x y} e^{-\frac{x^{2}}{2}} d x=e^{-\frac{y^{2}}{2}}
$$

We now turn to the computation of L_{2} norm of \hat{f}. We calculate it as

$$
\begin{aligned}
\|\hat{f}\|_{2}^{2} & =\lim _{\epsilon \rightarrow 0} \int_{R_{d}}|\hat{f}(y)|^{2} e^{-\frac{\epsilon\|y\|^{2}}{2}} d y \\
& =\lim _{\epsilon \rightarrow 0} \int_{R_{d}} \int_{R_{d}} \int_{R_{d}} f(x) \bar{f}(z) e^{i<x-z, y>} e^{-\frac{\epsilon\|y\|^{2}}{2}} d y d x d z \\
& =\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\sqrt{2 \pi \epsilon}}\right)^{d} \int_{R_{d}} \int_{R_{d}} f(x) \bar{f}(z) e^{-\frac{\|x-z\|^{2}}{2 \epsilon}} d x d z \\
& =\lim _{\epsilon \rightarrow 0} \int_{R^{d}} f(x)\left[K_{\epsilon} \bar{f}\right](x) d x \\
& =\int_{R^{d}}|f(x)|^{2} d x
\end{aligned}
$$

We see that the Fourier transform is a bounded linear map from L_{1} to L_{∞} as well as L_{2} to L_{2} with corresponding bounds $C=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d}$ and 1. By the Riesz-Thorin interpolation theorem the Fourier transform is bounded from L_{p} into $L_{\frac{p}{p-1}}$ for $1 \leq p \leq 2$. If $\frac{1}{p}=1 . t+\frac{1}{2}(1-t)$ then $\frac{1}{2}(1-t)=1-\frac{1}{p}=\frac{p-1}{p}$. See exercise to show that for $f \in L_{p}$ with $p>2$ the Fourier Transform need not exist.

For convolution operators of the form

$$
\begin{equation*}
(T f)(x)=(k * f)(x)=\int_{R^{d}} k(x-y) f(y) d y \tag{4}
\end{equation*}
$$

we want to estimate $\|T\|_{p}$, the operator norm from L_{p} to L_{p} for $1 \leq p \leq \infty$. As before for $p=1, \infty$,

$$
\|T\|_{p}=\int_{R^{d}}|k(y)| d y
$$

Let us suppose that for some constant C,

1. The Fourier transform $\hat{k}(y)$ of $k(\cdot)$ satisfies

$$
\begin{equation*}
\sup _{y \in R^{d}}|\hat{k}(y)| \leq C<\infty \tag{5}
\end{equation*}
$$

2. In addition,

$$
\begin{equation*}
\sup _{x \in R^{d}} \int_{\{y:\|x-y\| \geq C\|x\|\}}|k(y-x)-k(y)| d y \leq C<\infty \tag{6}
\end{equation*}
$$

We will estimate $\|T\|_{p}$ in terms of C. The main step is to establish a weak type $(1,1)$ inequality. Then we will use the interpolation theorems to get boundedness in the range $1<p \leq 2$ and duality to reach the interval $2 \leq p<\infty$.

Theorem 2. The function $g(x)=(T f)(x)=(k * f)(x)$ satisfies a weak type $(1,1)$ inequality

$$
\begin{equation*}
\mu\{x:|g(x)| \geq \ell\} \leq C_{0} \frac{\|f\|_{1}}{\ell} \tag{7}
\end{equation*}
$$

with a constant C_{0} that depends only on C.

We first prove a decomposition lemma that we will need for the proof of the theorem.

Lemma 1. Given any open set $G \in R^{d}$ of finite Lebesgue measure we can find a countable set of balls $\left\{S\left(x_{j}, r_{j}\right)\right\}$ with the following properties. The balls are all disjoint. $G=\cup_{j} S\left(x_{j}, 2 r_{j}\right)$ is the countable union of balls with the same centers but twice the radius. More over each point of G is covered at most 9^{d} times by the covering $G=\cup_{j} S\left(x_{j}, 2 r_{j}\right)$. Finally each of the balls $S\left(x_{j}, 8 r_{j}\right)$ has a nonempty intersection with G^{c}.

Basically, the lemma says that it is possible to write G as a nearly disjoint countable union of balls each having a radius that is comparable to the distance of the center from the boundary.

Proof. Suppose G is an open set in the plane of finite volume. Let $d(x)=$ $d\left(x, G^{c}\right)$ be the distance from x to G^{c} or the boundary of G. Let $d_{0}=$ $\sup _{x \in G} d(x)$. Since the volume of G is finite, G cannot contain any large balls and consequently d_{0} cannot be infinite. We consider balls $S(x, r(x))$ around x of radius $r(x)=\frac{d(x)}{4}$. They are contained in G and provide a covering of G as x varies over G. All these balls have the property that $S(x, 5 r(x))$ intersects G^{c}. We select a countable subcover from this covering $\cup_{x \in G} S(x, r(x))$. We choose x_{1} such that $d\left(x_{1}\right)>\frac{d_{0}}{2}$. Having chosen x_{1}, \ldots, x_{k} the choice of x_{k+1} is made as follows. We consider the balls $S\left(x_{i}, r\left(x_{i}\right)\right)$ for $i=1,2, \ldots, k$. Look at the set $G_{k}=\left\{x: S(x, r(x)) \cap S\left(x_{i}, r\left(x_{i}\right)\right)=\emptyset\right.$ for $\left.1 \leq i \leq k\right\}$ and define $d_{k}=\sup _{x \in G_{k}} d(x)$. We pick $x_{k+1} \in G_{k}$ such that $d\left(x_{k+1}\right)>\frac{d_{k}}{2}$. We proceed in this fashion to get a countable collection of balls $\left\{S\left(x_{j}, r\left(x_{j}\right)\right)\right\}$. By construction, they are disjoint balls contained in the set G of finite volume and therefore $r\left(x_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$. Since, $d_{j} \leq 2 d\left(x_{j+1}\right) \leq 8 r\left(x_{j+1}\right)$ it must also necessarily go to 0 as $j \rightarrow \infty$. Every $S\left(x_{j}, 5 r\left(x_{j}\right)\right)$ intersects G^{c}. We now worry about how much of G they cover. First we note that $G_{0} \supset G_{1} \supset$ $\cdots \supset G_{k} \supset G_{k+1} \supset \cdots$. We claim that $\cap_{k} G_{k}=\emptyset$. If not let $x \in G_{k}$ for every k. Then $d_{k} \geq d(x)>0$ for every k contradicting the convergence of d_{k} to 0 . Since $x \in G_{0}=G$, we can find $k \geq 1$ be such that $x \notin G_{k}$ but $x \in G_{k-1}$. Then $S(x, r(x))$ must intersect $S\left(x_{k}, r\left(x_{k}\right)\right)$ giving us the inequality $\left|x-x_{k}\right| \leq$ $r(x)+r\left(x_{k}\right) \leq \frac{d(x)}{4}+r\left(x_{k}\right) \leq \frac{d_{k-1}}{4}+r\left(x_{k}\right) \leq \frac{d\left(x_{k}\right)}{2}+r\left(x_{k}\right)=\frac{3}{2} r\left(x_{k}\right)$. Clearly $S\left(x_{k}, 2 r\left(x_{k}\right)\right.$ will contain x. Since $\frac{3}{2} r(x)<d(x)$ the enlarged ball is still within G. This means $G=\cup_{k} S\left(x_{k}, 2 r\left(x_{k}\right)\right)$. Now we worry about how often a point x can be covered by $\left\{S\left(x_{k}, 2 r\left(x_{k}\right)\right\}\right.$. Let for some $k,\left|x-x_{k}\right| \leq 2 r\left(x_{k}\right)$. Then by the triangle inequality $\left|d(x)-d\left(x_{k}\right)\right| \leq 2 r\left(x_{k}\right)=\frac{1}{2} d\left(x_{k}\right)$. This implies
that for the ratio $\frac{r(x)}{r\left(x_{k}\right)}=\frac{d(x)}{d\left(x_{k}\right)}$ we have $\frac{1}{2} \leq \frac{r(x)}{r\left(x_{k}\right)} \leq \frac{3}{2}$ In particular any ball $S\left(x_{j}, 2 r\left(x_{j}\right)\right.$ that covers x, must have its center with in a distance of $4 r(x)$ and the corresponding $r\left(x_{j}\right)$ must be in the range $\frac{2}{3} r(x) \leq r\left(x_{j}\right) \leq 2 r(x)$. The balls $S\left(x_{j}, r\left(x_{j}\right)\right.$ are then contained in $S(x, 6 r(x))$ are disjoint and have a radius of atleast $\frac{2}{3} r(x)$. There can be atmost 9^{d} of them by considering the total volume. We can choose our norm in R^{d} to be $\max _{i}\left|x_{i}\right|$ and force the spheres to be cubes.

Proof of theorem. The proof is similar to the one-dimensional case with some modifications.

1. We let G_{ℓ} be the open set where the maximal function $M_{f}(x)$ satisfies $\left|M_{f}(x)\right|>\ell$. From the maximal inequality

$$
\begin{equation*}
\mu\left[G_{\ell}\right] \leq C \frac{\|f\|_{1}}{\ell} \tag{8}
\end{equation*}
$$

2. We write $G_{\ell}=\cup_{j} B_{j}=\cup_{j} S\left(x_{j}, 2 r_{j}\right)$, a countable union of cubes according to the lemma.

3 . If we let

$$
\phi(x)=\sum_{j} \mathbf{1}_{B_{j}}(x)
$$

then $1 \leq \phi(x) \leq 9^{d}$ on G_{ℓ}.
4. Let us define a weighted average m_{j} of $f(y)$ on B_{j} by

$$
\begin{equation*}
\int_{B_{j}}\left[f(y)-m_{j}\right] \frac{d y}{\phi(y)}=0 \tag{9}
\end{equation*}
$$

and write

$$
\begin{align*}
f(x) & =f(x) \mathbf{1}_{G_{\ell}^{c}}(x)+\frac{1}{\phi(x)} \sum_{j} f(x) \mathbf{1}_{B_{j}}(x) \\
& =f(x) \mathbf{1}_{G_{\ell}^{c}}(x)+\frac{1}{\phi(x)} \sum_{j} m_{j} \mathbf{1}_{B_{j}}(x)+\frac{1}{\phi(x)} \sum_{j}\left[f(x)-m_{j}\right] \mathbf{1}_{B_{j}}(x) \\
& =h_{0}(x)+\sum_{j} h_{j}(x) \tag{10}
\end{align*}
$$

5. For any cube B_{j} with center x_{j} there is a cube with 4 times its size and with the same center that contains a point $x_{j}^{\prime} \in G_{\ell}^{c}$ with $\left|M_{f}\left(x_{j}^{\prime}\right)\right| \leq$ ℓ. The cube $S\left(x_{j}^{\prime}, 10 r_{j}\right)$ contains B_{j}. Therefore with some constant depending only on the dimension

$$
\begin{equation*}
\left|m_{j}\right| \leq C_{d} \ell \tag{11}
\end{equation*}
$$

Moreover on $G_{\ell}^{c},|f(x)| \leq M_{f}(x) \leq \ell$. Hence

$$
\begin{equation*}
\left\|h_{0}\right\|_{\infty} \leq \ell+C_{d} \ell=\left(C_{d}+1\right) \ell \tag{12}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\left\|h_{0}\right\|_{1} & \leq\|f\|_{1}+C_{d} \ell \sum_{j} \mu\left[B_{j}\right] \\
& \leq\|f\|_{1}+C_{d}^{2} \ell \mu\left[G_{\ell}\right] \\
& \leq\left(1+C C_{d}^{2}\right)\|f\|_{1} \tag{13}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\left\|h_{0}\right\|_{2}^{2} \leq\left(C_{d}+1\right) \ell\left\|h_{0}\right\|_{1} \leq C_{1} \ell\|f\|_{1} \tag{14}
\end{equation*}
$$

From the boundedness of T from L_{2} to L_{2} this gives

$$
\begin{equation*}
\mu\left\{x:\left|\left(T h_{0}\right)(x)\right| \geq \ell\right\} \leq C_{2} \frac{\|f\|_{1}}{\ell} \tag{15}
\end{equation*}
$$

6. We now turn our attention to the functions $\left\{h_{j}\right\}$

$$
\begin{align*}
w & =T\left[\sum_{j} h_{j}\right]=\sum_{j} \int_{B_{j}}\left[f(y)-m_{j}\right] k(x-y) \frac{d y}{\phi(y)} \\
& =\sum_{j} \int_{B_{j}}\left[f(y)-m_{j}\right]\left[k(x-y)-k\left(x-x_{j}\right)\right] \frac{d y}{\phi(y)} \\
& \leq \sum_{j} \int_{B_{j}}\left|f(y)-m_{j}\right|\left|k(x-y)-k\left(x-x_{j}\right)\right| d y \tag{16}
\end{align*}
$$

We estimate $|w(x)|$ for $x \notin \cup_{j} U_{j}$ where U_{j} is the cube with the same center x_{j} as B_{j} but enlarged by a factor $C+1$. In particular if $y \in B_{j}$
and $x \in U_{j}^{c}$, then $|y-x| \geq\left|x-x_{j}\right|-\left|y-x_{j}\right| \geq C\left|y-x_{j}\right|$.

$$
\begin{align*}
\int_{\cap_{j} U_{j}^{c}}|w(x)| d x & \leq \sum_{j} \int_{\cap_{j} U_{j}^{c}}\left[\int_{B_{j}}\left|f(y)-m_{j}\right|\left|k(x-y)-k\left(x-x_{j}\right)\right| d y\right] d x \\
& \leq \sum_{j} \int_{B_{j}}\left|f(y)-m_{j}\right|\left[\int_{E_{j}}\left|k(x-y)-k\left(x-x_{j}\right)\right| d x\right] d y \tag{17}
\end{align*}
$$

where $E_{j} \subset\left\{x:|x-y| \geq C\left|y-x_{j}\right|\right\}$. Therefore,

$$
\begin{align*}
\int_{E_{j}} & \left|k(x-y)-k\left(x-x_{j}\right)\right| d x \\
& \leq \sup _{y, j} \int_{\left\{x:|x-y| \geq C\left|y-x_{j}\right|\right\}}\left|k(x-y)-k\left(x-x_{j}\right)\right| d x \\
& \leq \sup _{y} \int_{\{x:|x-y| \geq C|y|\}}|k(x-y)-k(x)| d x \\
& \leq C \tag{18}
\end{align*}
$$

giving us the estimate

$$
\begin{align*}
\int_{\cap_{j} U_{j}^{c}}|w(x)| d x & \leq C \sum_{j} \int_{B_{j}}\left|f(y)-m_{j}\right| d y \\
& \leq C\left(\|f\|_{1}+\left[\sup _{j} m_{j}\right] \sum_{j} \mu\left[B_{j}\right]\right) \\
& \leq C_{1}\|f\|_{1} \tag{19}
\end{align*}
$$

7. We put the pieces together and we are done.
