
2 Singular Integrals

We start with a very useful covering lemma.

Lemma 1. Suppose K ⊂ S is a compact subset and Iα is a covering of K.
There is a finite subcollection {Ij} such that

1. {Ij} are disjoint.

2. The intervals {3Ij} that have the same midpoints as {Ij} but three
times the lenghth cover K.

Proof. We first choose a finite subcover. From the finite subcover we pick
the largest interval. In case of a tie pick any of the competing ones. Then, at
any stage, of the remaining intervals from our finite subcollection we pick the
largest one that is disjoint from the ones already picked. We stop when we
cannot pick any more. The collection that we end up with is clearly disjoint
and finite. Let x ∈ K. This is covered by one of the intervals I from our
finite subcollection covering K. If I was picked there is nothing to prove.
If I is not picked it must intersect some Ij already picked. Let us look at
the first such interval and call it Ij. I is disjoint from all the previously
picked ones and I was passed over when we picked Ij. Therefore inaddition
to intersecting Ij, I is not larger than Ij. Therefore 3Ij ⊃ I 3 x.

This lemma is used in proving maximal inequalities. For instance, for the
Hardy-Littlewood maximal function we have

Theorem 1. Let f ∈ L1(S). Define

Mf(x) = sup
0<r<π

2

1

2r

∫
|y−x|<r

|f(y)|dy (1)

µ[x : Mf (x) > `] ≤ 3
∫ |f(y)|dy

`
(2)

Proof. Let us denote by E` the set

E` = {x : Mf (x) > `}
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and let K ⊂ E` be an arbitrary compact set. For each x ∈ K there is an
interval Ix such that

∫
Ix

|f(y)|dy ≥ `µ(Ix)

Clearly {Ix} is a covering of K and by lemma we get a finite disjoint sub
collection {Ij} such that {3Ij} covers K. Adding them up

∫
|f(y)|dy ≥

∑
j

µ(Ij) ≥ 1

3

∑
j

µ(3Ij) ≥ µ(K)

Sine K ⊂ E` is arbitrary we are done.

There is no problem in replacing {x : |Mf(x)| > `} by {x : |Mf(x)| ≥ `}.
Replace ` by `− ε and let ε→ 0.

This theorem can be used to prove the Labesgue diffrentiability theorem.

Theorem 2. For any f ∈ L1(S),

lim
h→0

1

2h

∫
|x−y|≤h

|f(y)− f(x)|dy = 0 a.e. x (3)

Proof. It is sufficient to prove that for any δ > 0

µ[x : lim sup
h→0

1

2h

∫
|x−y|≤h

|f(y)− f(x)|dy ≥ δ] = 0

Given ε > 0 we can write f = f1 + g with f1 continuous and ‖g‖1 ≤ ε and

µ[x : lim sup
h→0

1

2h

∫
|x−y|≤h

|f(y) − f(x)|dy ≥ δ]

= µ[x : lim sup
h→0

1

2h

∫
|x−y|≤h

|g(y)− g(x)|dy ≥ δ]

≤ µ[x : sup
h>0

1

2h

∫
|x−y|≤h

|g(y)− g(x)|dy ≥ δ]

≤ 3‖h‖1

δ
≤ 3ε

δ

Since ε > 0 is arbitrary we are done.
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In other words the maximal inequality is useful to prove almost sure
convergence. Typically almost sure convergence will be obvious for a dense
set and the maximal inequality will be used to interchange limits in the
approximation.

Another summability method, like the Fejer sum that is often considred
is the Poisson sum

S(ρ, x) =
∑

n

anρ
|n|einx

and the kernel corresponding to it is the Poisson kernel

p(ρ, z) =
1

2π

∑
n

ρ|n|einz =
1

2π

1 − ρ2

(1 − 2ρ cos z + ρ2)
(4)

so that

P (ρ, x) =

∫
f(y)p(ρ, x− y)dy

It is left as an exercise to prove that for for 1 ≤ p < ∞, every f ∈ Lp

P (ρ, ·) → f(·) in Lp as ρ → 1. We will prove a maximal inequality for the
Poisson sum, so that as a consequence we will get the almost sure convergence
of P (ρ, x) to f for every f in L1.

Theorem 3. For every f in L1

µ[x : sup
0≤ρ<1

P (ρ, x) ≥ `] ≤ C‖f‖1

`
(5)

Proof. The proof consists of estimating the Poisson maximal function in-
terms of the Hardy-Littlewood maximal function Mf (x). We begin with
some simple estimates for the Poisson kernel p(ρ, z).

p(ρ, z) =
1

2π

1 − ρ2

(1 − ρ)2 + 2ρ(1 − cos z)
≤ 1

2π

1 − ρ2

(1 − ρ)2

=
1

2π

1 + ρ

1 − ρ
≤ 1

π

1

1 − ρ

The problem therefore is only as ρ→ 1. Lets us assume that ρ ≥ 1
2
.
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For any symmetric function φ(z) the intgral

|
∫ π

−π

f(z)φ(z)dz|

= |
∫ π

0

[f(z) + f(−z)]φ(z)dz|

= |
∫ π

0

φ(z)[
d

dz

∫ z

−z

f(y)dy]dz|

≤ |
∫ π

0

φ′(z)[
∫ z

−z

f(y)dy]dz|+ |φ(π)|
∫ π

−π

f(z)dz|

≤
∫ π

0

2|zφ′(z)|[
∫

|f(y)|λz(dy)]dz + φ(π)|
∫ π

−π

|f(z)|dz

≤ 2Mf(0)

∫ π

0

|zφ′(z)|dz + φ(π)||Mf(0)|

For the Poisson kernel

|z d
dz
p(ρ, z)| =

1

2π

1 − ρ2

(1 − 2ρ cos z + ρ2)2
2ρ|z sin z|

≤ 1

π

(1 − ρ)z2

(1 − ρ)4 + (1 − cos z)2

≤ C
(1 − ρ)z2

(1 − ρ)4 + z4

and
∫ π

−π

|z d
dz
p(ρ, z)|dz ≤ C

∫ π

−π

(1 − ρ)z2

(1 − ρ)4 + z4
dz

=

∫ π
1−ρ

− π
1−ρ

z2

1 + z4
dz

≤
∫ ∞

−∞

z2

1 + z4
dz ≤ C1

uniformly in ρ.

Interpolation theorems play a very important role in Harmonic Analysis.
An example is the following
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Theorem 4 (Marcinkiewicz). Let T be a sublinear map defiened on Lp ∩
Lq that satisfies weak type inequlities

µ[|x| : |(Tf)(x)| ≥ `] ≤ Ci‖f‖pi
pi

`pi
(6)

for i = 1, 2 where 1 ≤ p1 < p2 < ∞. Then for p1 < p < p2, there are
constants Cp such that

‖Tf‖p ≤ Cp‖f‖p (7)

Note that T need not be linear. It need only satisfy

|T (f + g)|(x) ≤ |Tf |(x) + |Tg|(x) (8)

Proof. Let p ∈ (p1, p2) be fixed. For any function f ∈ Lp and for any positive
number a we deine fa = fχ{|f |≤a} and fa = χ{|f |>a}. Clearly fa ∈ Lp2 and
fa ∈ Lp1

µ[x : |Tf(x)|| ≥ 2`] ≤ µ[x : |Tfa(x)|| ≥ `] + µ[x : |Tfa(x)|| ≥ `]

≤ C2

`p2

∫
|f(x)|≤a

|f(x)|p2dµ+
C1

`p1

∫
|f(x)|>a

|f(x)|p1dµ

Take a = `, multiply by `p−1 and integrate with respect to ` from 0 to ∞.
Use Fubini’s theorem. We get

∫ ∞

0

`p−1µ[x : |Tf(x)|| ≥ 2`]d` ≤ [
C2

p2 − p
+

C1

p− p1
]

∫
|f(x)|pdµ (9)

Since the left hand side is
‖Tf‖pp

p
we are done.

There is a slight variation of the argument that allows p2 to be infinite pro-
vided T is bounded on L∞. If we denote the norm by C2 we use

µ[x : |Tf(x)|| ≥ (C + 1)`] ≤ µ[x : |Tfa(x)|| ≥ `]

and proceed as before.
A different interpolation theorem for linear maps T is the following
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Theorem 5 (Riesz-Thorin). If a linear map T is bounded from Lpi into
Lpi with a bound Ci for i = 1, 2 then for p1 ≤ p ≤ p2 it is bounded from Lp

into Lp with a bound Cp that can be taken to be

Cp = Ct
1C

1−t
2 (10)

where t is determined by

1

p
= t

1

p1
+ (1 − t)

1

p2
(11)

Proof. The proof uses methods from the theory of functions of a complex
variable. The starting point is the maximum modulus principle. Let us
assume that u(z) is analytic in the open strip a < Rez < b and bounded
and continuous in the closed strip a ≤ Rez ≤ b. Let M(x) be the maximum
modulus of the function on the line Rez = x. Then logM(x) is a convex
function of x.This is not hard to see. Clearly the maximum principle dictates
that

M(x) ≤ max[M(a),M(b)]

If one is worried about the maximum being attained, one can always mutiply
by eεz2

and let ε go to 0. Replacing u(z) by u(z)etz yields the inequality

M(x) ≤ max[M(a)et(a−x),M(b)et(b−x)]

optimizing with respect to t we get,

M(x) ≤ max[[M(a)]
b−x
b−a , [M(b)]

x−a
b−a ]

which is the required convexity.
We note that the maximum of any collection of convex functions is again

convex. The proof is completed by representing logF (p), where F (p) is the
norm of T from Lp to Lp, as the supremum of a bunch of functions that are

11



convex in x = 1
p
.

‖T‖p,p = sup
‖f‖p≤1

‖g‖q≤1

|
∫
g(Tf)dµ|

= sup
‖f‖p≤1,f≥0,|φ|=1

‖g‖q≤1,g≥0,|ψ|=1

|
∫

(gψ)(T (fφ))dµ|

= sup
‖f‖1≤1,f>0,|φ|=1
‖g‖1≤1,g>0,|ψ|=1

|
∫

(gxψ)(T (f 1−xφ))dµ|

= sup
‖f‖1≤1,f>0,|φ|=1
‖g‖1≤1,g>0,|ψ|=1

Rez=x

|
∫

(gzψ)(T (f 1−zφ))dµ|

= sup
‖f‖1≤1,f>0,|φ|=1
‖g‖1≤1,g>0,|ψ|=1

sup
Rez=x

|u(f, g, φ, ψ, z)|

In particular for the Hardy-Littlewood or Poisson maximal function the
L∞ bound is trivial and we now have a bound for the Lp norm of the maximal
function in terms of the Lp norm of the original function provided p > 1.

For a convolution operator of the form

(Tf)(x) =

∫ π

−π

f(y)k(x− y)dy (12)

we saw that for it to be bounded as an operator from L1 into itself we need
k to be in L1. However for 1 < p < ∞ the operator can some times be
bounded even if k is not in L1. This is proved by establishing a bound from
L2 to L2 and a weak type inequality in L1. We can then use Marcinkiewicz
interpolation, followed by Riesz-Thorin interpolation.

Theorem 6. If

k̂(n) =

∫
einzk(z)dz

is bounded in absolute value by C, then the convolution operator given by
equation (12) is bounded by C as an operator from L2 to L2.
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Proof. Use the the orthonormal basis einx to diagonalize T

Teinx = k̂(n)einx (13)

We now proceed to establish weak type (1, 1) estimate. We shall assune that
we have a kernel k in L1 that satisfies

1.

sup
n

|
∫
k(y)einydy| = C1 <∞ (14)

2.

sup
y

∫
x:|x−y|>2|y|

|k(x− y) − k(x)|dx = C2 <∞ (15)

Although we have assumed that k is in L1 we will prove a weak type (1, 1)
bound.

Theorem 7. The operator of convolution by k

(Tkf)(x) =

∫ π

−π

k(x− y)f(y)dy (16)

satisfies the weak type inequality (1,1)

µ[|x| : |(Tf)(x)| ≥ `] ≤ C

`
‖f‖1 (17)

with a constant C that depends only on C1 and C2.

Proof. Proof involves several steps.

• First we observe that the Hardy-Littlewood maximal function given
by (1) satisfies equation 2). The set G = [x : Mf (x) ≥ `] is an open

set in [−π, π] and has Lebsgue measure atmost 3‖f‖1

`
. We assume that

` > 3‖f‖1

2π
so that B = Gc is nonempty. We write the open set G as

a possible countable union of disjoint open intervals Ij of length rj

centered at xj . Note that the end points xj ± 1
2
rj necessarily belong to

B. The maximal inequality assures us that

∑
j

rj ≤ 3‖f‖1

`

13



• Let us define the averages

mj =
1

rj

∫
Ij

f(y)dy

and write f in the form

f(x) = [f(x)1B(x) +
∑

j

mj1Ij(x)] +
∑

j

[f(x) −mj ]1Ij(x)

= g(x) +
∑

j

hj(x)

• We have the bounds

|mj| ≤ 1

rj

∫
Ij

|f(y)|dy ≤ 1

rj

∫
Ĩj

|f(y)|dy

≤ 2
1

2rj

∫
Ĩj

|f(y)|dy ≤ 2Mf (xj ± rj) ≤ 2`

Here Ĩj is the interval centered around xj±rj
2

of length 2rj. In particular
‖g‖∞ ≤ 2`. On the other hand

∑
j

‖hj‖1 =
∑

j

∫
Ij

|f(y) −mj |dy ≤ 2
∑

j

∫
Ij

|f(y)|dy ≤ 2‖f‖1

We therefore have

‖g‖1 ≤ 3‖f‖1

Note that the decomposition depends on `. Let us write the corre-
sponding sum

u = Tkf = Tkg +
∑

j

Tkhj = v +
∑

j

wj = v + w

• We estimate the L2 norm of v and the L1 norm of w on large enough
set. Then use Tchebychev’s inequality.

µ[x : |v(x)| ≥ `

2
] ≤ ‖v‖2

2

`2
≤ C1‖g‖2

2

`2
≤ 2`C1‖g‖1

`2
=

6C1‖f‖1

`
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Let us denote by Îj the interval centered around xj of length 3rj and

by U = ∪j Îj . We begin by estimating ‖w.1Uc‖1.

‖w.1Uc‖1 ≤
∫

Uc

∑
j

|
∫

Ij

k(x− y)[f(y)−mj]dy|dx

=

∫
Uc

∑
j

|
∫

Ij

[k(x− y) − k(x− xj)][f(y) −mj ]dy|dx

≤
∫

Uc

∑
j

∫
Ij

|k(x− y) − k(x− xj)||f(y) −mj |dydx

=
∑

j

∫
Ij

|f(y)−mj |dy
∫

Uc
|k(x− y) − k(x− xj)|dx

≤
∑

j

∫
Ij

|f(y)−mj |dy
∫

Îcj

|k(x− y) − k(x− xj)|dx

≤
∑

j

∫
Ij

|f(y)−mj |dy
∫

x:|x−y|≥2|y−xj|
|k(x− y) − k(x− xj)|dx

≤ C2

∑
j

∫
Ij

|f(y) −mj|dy

≤ 2C2‖f‖1

We have used here two facts. f(y)−mj has mean zero on Ij . If y ∈ Ij
and x ∈ Ĩc

j , then |y − x| ≥ rj ≥ 2|y − xj |. On the other hand

µ(U) ≤
∑

µ(Ĩj) ≤ 3
∑

µ(Ij) = 3
∑

j

rj ≤ 9‖f‖1

`

• Finally we can put the pieces together.

µ(x : |u(x)| ≥ 2`) ≤ µ(x : |v(x)| ≥ `) + µ(x : |w(x)| ≥ `)

≤ 6C1‖f‖1

`
+

9‖f‖1

`
+

2C2‖f‖1

`

or

µ(x : |u(x)| ≥ `) ≤ (12C1 + 18 + 4C2)‖f‖1

`
=
C‖f‖1

`
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There is one point that we should note. For the interval doubling construction
on the circle we should be sure that we do not see for instance any interval
of lenghth larger than π

2
in G. This can be ensured if we take ` > 6‖f‖1

π
. The

inequality is however satisfied for all ` because C ≥ 12.
We want to look at the special kernel k(y) = 1

y
which is not in L1. We

consider its truncation

kδ(y) =
1

y
1{|y|≥δ}(y)

First we estimate the Fourier transform

|
∫
|y|≥δ

einy

y
dy| = 2|

∫ π

δ

sinny

y
dy|

= 2|
∫

nδ

nπ
sin y

y
dy| ≤ 4 sup

0<a<∞
|
∫ a

0

sin y

y
dy| ≤ C1

Next in order to verify the condition (15) we need to estimate the following
quantity uniformly in y and δ.

∫
x:|x−y|>2|y|

|kδ(x− y) − kδ(x)|dx

There are three sets over which the integral does not vanish.

F1 = {x : |x− y| > 2|y|, |x− y| ≥ δ, |x| ≥ δ}
F2 = {x : |x− y| > 2|y|, |x− y| ≤ δ, |x| ≥ δ}
F3 = {x : |x− y| > 2|y|, |x− y| ≥ δ, |x| ≤ δ}

We consider ∫
F1

| 1

x− y
− 1

x
|dx ≤

∫
x:|x−y|≥2|y|

| 1

x− y
− 1

x
|dx

≤
∫
|z−1|≥2

| 1

z − 1
− 1

z
|dz

= C3
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It is clear that F2 ⊂ [−2δ, 2δ]. Therefore∫
F2

1

|x|dx ≤ 2

∫ 2δ

δ

dx

x
= C4

Finally F3 ⊂ [x : |x− y| ≤ 2δ] and works similarly. With C2 = C3 + 2C4 we
are done.

We are now ready to prove

Theorem 8. For any f ∈ Lp the partial sums sN(f, x) converge to f in Lp

provided 1 < p <∞.

Proof. We need only prove, for 1 < p < ∞, a bound from Lp to Lp, for the
partial sum operators

(TNf)(x) =

∫
f(x− y)kN(y)dy

with

kN(z) =
1

2π

sin(N + 1
2
)z

sin z
2

that is uniform in N . In terms of multipliers we are looking at a uniform Lp

bound for the operators defined by

k̂N(n) = 1{|n|≤N}(n)

Let us define the operators Mk as multiplication by eikx which are isometries
in every Lp. P0 is the operator of projection to constants, i.e. the operator
with multiplier 1{0}(n) which is clearly bounded in every Lp. Finally the
Hilbert transform S is the one with multiplier signum n. It is easy to verify
that

TN = M−N
1

2
[(S + I) + P0]MN −M(N+1)]

1

2
[(S + I) + P0]M−(N+1)]

This reduces the problem to proving that a single operator S is bounded on
Lp. The kernel is calculated to be

s(z) =
1

2π
cot

z

2
This can be replaced by the modified kernel

k(z) =
1

πz
and we are done.
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