
Chapter 1

Fourier Series

We will consider complex valued periodic functions with period 2π. We can
view them as functions defined on the circumference S of the unit circle
in the complex plane or equivalently as function f defined on [−π, π] with
f(−π) = f(π). The Fourier Coefficients of the function f are defined by

an =
1

2π

∫ π

−π

f(x)e−inxdx (1.1)

and formally

f(x) '
∑

aneinx (1.2)

If we assume that f ∈ L1[0, 2π] then clearly an is well defined and

|an| ≤ 1

2π

∫ π

−π

|f(x)|dx

It is not clear that the sum on right hand side of equation 1.2 converges
and even if it does it is not clear that it is actually equal to the the function
f(x). It is relatively easy to find conditions on f(·) so that the sum in 1.2 is
convergent. If f(x) is assumed to be k times continuously differentiable on
S, integrating by parts k times one gets, for n 6= 0,

|an| ≤ 1

nk
sup

x
|f {k}(x)| (1.3)

From the estimate 1.3 it is easily seen that the sum is convergent if f is twice
continuosly differentiable.

Another important but elementary fact is
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Theorem 1 (Riemann-Lebesgue). For every f ∈ L1[−π, π],

lim
n→±∞

an = 0 (1.4)

Let us define the partial sums

sN(f, x) =
∑
|n|≤N

aneinx (1.5)

and the Fejer sum

SN(f, x) =
1

N + 1

∑
0≤n≤N

sn(f, x) (1.6)

We can calculate

sn(f, x) =
1

2π

∑
|j|≤n

eijx

∫ π

−π

e−ijyf(y)dy

=
1

2π

∫ π

−π

f(y)[
∑
|j|≤n

eij(x−y)]dy

=
1

2π

∫ π

−π

f(y)
e−in(x−y)(ei(2n+1)(x−y) − 1)

ei(x−y) − 1
dy

=

∫ 2π

0

f(y)kn(x − y)dy (1.7)

where

kn(z) =
1

2π

e−inz(ei(2n+1)z − 1)

eiz − 1
=

1

2π

sin(n + 1
2
)z

sin z
2

(1.8)

A similar calculation reveals

SN (f, x) =

∫ π

−π

f(y)KN(x − y)dy (1.9)

where

KN(z) =
1

2π

1

(N + 1)

1

sin z
2

∑
0≤n≤N

[ei(n+1)z − e−inz]

=
1

2π

1

(N + 1)

1

sin z
2

1

eiz − 1
[(eiz − e−iNz)(ei(N+1)z − 1)]

=
1

π

1

(N + 1)

[
sin(N + 1

2
)z

sin z
2

]2

(1.10)
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Notice that for every N ,
∫ π

−π

kN(z)dz =

∫ π

−π

KN (z)dz = 1 (1.11)

The following observations are now easy to make.

1. Nonnegativity.

KN (z) ≥ 0

2. For any δ > 0,

lim
N→∞

sup
|z|≥δ

KN(z) = 0

3. Therefore

lim
N→∞

∫
|z|≥δ

KN(z)dz = 0

It is now an easy exercise to prove

Theorem 2. For any f that is bounded and continuous on S

lim
N→∞

sup
x∈S

|SN(f, x) − f(x)| = 0

Theorem 3. For any f ∈ Lp[−π, π]

‖SN(f, ·)‖p ≤ ‖f‖p

and therefore for 1 ≤ p < ∞,

lim
N→∞

‖SN(f, ·) − f(·)‖p = 0

The behavior of sN (f, x) is more complicated. However it is easy enough
to see that

Theorem 4. For f ∈ C2(S),

lim
N→∞

sup
x

|sN(f, x) − f(x)| = 0
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The series converges and so sN(f, ·) has a uniform limit g. SN(f, ·) has
the same limit, but has just been shown to converge to f . Therefore f = g.
The following Theorem is fairly easy.

Theorem 5. If f is a function in Cα(S) i.e Hölder continuous with some
exponent α > 0 then

lim
N→∞

sN(f, x) = f(x)

Proof. We can assume thatwith out loss of generality that x = 0 and let
f(0) = a. We need to show that

lim
N→∞

1

2π

∫ π

−π

f(y)
sin(N + 1

2
)y

sin y
2

dy = a (1.12)

Because f(y)−a
sin y

2
is integrable, 1.12 is consequence of the Riemann-Lebesgue

Theorem, i.e. Theorem 1.

If f is a bounded function, then one can replace sin y
2

by y
2

and the problem
reduces to calculating

lim
λ→∞

1

π

∫ π

−π

f(y)
sinλy

y
dy

Let us now assume that f is a function of bounded variation on S which has
left and right limits al and ar at 0. By a change of variables one can reduce
the above to calculating

lim
λ→∞

1

π

∫ λπ

−λπ

f(
y

λ
)
sin y

y
dy

If we denote by

G(y) =

∫ ∞

y

sin x

x
dx

then

ar(λ) =
1

π

∫ λπ

0

f(
y

λ
)
sin y

y
dy = −1

π

∫ λπ

0

f(
y

λ
)dG(y)

=
1

2
ar +

1

π

∫ λπ

0

G(y)df(
y

λ
) =

1

2
ar +

1

π

∫ π

0

G(λy)df(y)

→ 1

2
ar

by the bounded convergence theorem. This establishes the following
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Theorem 6. If f is of bounded variation on S

lim
N→∞

sN (f, x) =
f(x + 0) + f(x − 0)

2

The behavior of sN(f, x) for f in Lp[−π, π] for 1 ≤ p < ∞ is more
complex. Let us define the linear operator

(Tλf)(x) =

∫ π

−π

f(x + y)
sin λy

sin y
2

dy (1.13)

on smooth functions f . If sN(f, x) were to converge uniformly to f for every
bounded continuous function it would follow by the uniform boundedness
principle that

sup
x

|(Tλf)(x)| ≤ C sup
x

|f(x)|

with a constant independent of λ, atleast for λ = N + 1
2

for positive integers
N . Let us show that this is false. The best possible bound C = Cλ is seen
to be

Cλ =
1

2π

∫ π

−π

| sin λy|
| sin y

2
| dy

and because

| 1

sin y
2

− 2

y
|

is integrable, Cλ differs from

1

2π

∫ π

−π

| sin λy|
|y| dy =

1

2π

∫ λπ

−λπ

| sin y|
|y| dy

by a uniformly bounded amount. The divergence of

1

2π

∫ ∞

−∞

| sin y|
|y| dy

implies that Cλ → ∞ as λ → ∞. By duality theis means that Tλf is not
uniformly bounded as an operator from L1[−π, π] into itself either. Again
from uniform boudedness principle one cannot expect that sN (f, ·) tends to
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f(·) in L1[−π, π] for evrery f ∈ L1[−π, π]. However we will prove that for
1 < p < ∞, for f ∈ Lp[−π, π]

lim
λ→∞

‖Tλf − f‖p = 0

By standard arguments involving the approximation of an Lp function by a
continuous function it is sufficient to prove a uniform bound of the form

‖Tλf‖p ≤ Cp‖f‖p

with a constant Cp depending only on p for smooth functions f and λ ≥ 1
First we establtsh what is known as weak type inequality.

Theorem 7. There is a constant C such that for all λ ≥ 1 and smooth f

mes{x : |(Tλf)| ≥ `} ≤ C

`
‖f‖1


