
We now look at the nonlinearly perturbed version

dx(t) = Ax(t)dt + F (x(t))dt + Bdβ(t)

where F : H → H is a Lipschitz map, i.e.

‖F (x) − F (y)‖ ≤ C‖x − y‖

A mild solution of the equation is one that satisfies which is almost surely in C[[0, T ],H]
and satisfies

X(t) = T (t)x +

∫ t

0

T (t − s)F (X(s))ds +

∫ t

0

T (t − s)Bdβ(s)

Under the conditions
∫ t

0

TrT (s)BB∗T ∗(s)ds < ∞

which makes

w(t) =

∫ t

0

T (t − s)Bdβ(s)

well defined, the integral equation has a unique solution X(t, x). For fixed x and w(t)
consider the map U : C[[0, T ];H] → C[[0, T ];H] defined by

U(X)(t) = T (t)x +

∫ t

0

T (t − s)F (X(s))ds +

∫ t

0

T (t − s)Bdβ(s)

Then

U(X)(t) − U(Y )(t) =

∫ t

0

T (t − s)[F (X(s))− F (Y (s))]ds

and
sup

0≤t≤T

‖U(X)(t) − U(Y )(t)‖ ≤ TMeωT C sup
0≤t≤T

‖X(t)− Y (t)‖

For T small enough this is a contraction and has a fixed point. Since the estimate on T is
uniform in x, and w(t), we can iterate and get global existence and uniqueness.

Dependence on initial condition. It is easy to see that if F is smooth then X(t, x)
is smooth in x. If we compute the derivative Dh in some direction h ∈ H, then Y (t) =
Y (t, x, h) = DhX(t, x) satisfies

Y (t) = T (t)h +

∫ t

0

T (t − s)(DF )(X(s, x)) · Y (s)dt

If ‖DF‖ is uniformly bounded as a linear map from H → H, then Y (t, x, h) is a linear
map Z(t, x)h and Z(t, x) = DX(t, x), has a uniform bound supx ‖Z(t, x)‖ ≤ k(t).
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Possible Approximations. One can approximate A by Ak = k[(I − k−1A)−1 − I] as in
Hille-Yosida theory. Also one can take only a finite number of Brownian motions and use

k
∑

j=1

ejβj(t)

where e1, . . . , ek are the first k elements of an ON basis in K. These approximations are
useful in generalizing the obvious relations from finite to infinite dimensions.

Clearly the process is Feller. one checks

‖X(t, x)− X(t, y)‖ ≤ k(t)‖x − y‖

Strong Feller Property. Let Pt be the semigroup

(Ptφ)(x) = E[φ(X(t, x))]

Then (Pt−sφ)(X(s, x)) = E[φ(X(t, x))|X(s, x)] is a martingale.

φ(X(t, x)) = (Ptφ)(x) +

∫ t

0

〈DPt−sφ)(X(s, x)), Bdβ(s)〉

Multiply both sides by
∫ t

0
< B−1DhX(s, x), dβ(s) > and take expectations.

E

[

φ(X(t, x))

∫ t

0

< B−1DhX(s, x), dβ(s) >

]

= E

[
∫ t

0

〈DPt−sφ)(X(s, x)), Bdβ(s)〉
∫ t

0

< B−1DhX(s, x), dβ(s) >

]

= E

[
∫ t

0

< B∗DPt−sφ)(X(s, x)), B−1DhX(s, x) > ds

]

= E

[
∫ t

0

< DPt−sφ)(X(s, x)), DhX(s, x) > ds

]

= E

[
∫ t

0

< DPt−sφ)(X(s, x)), DhX(s, x) > ds

]

= t(DhPtφ)(x)

Therefore

(DhPtφ)(x) =
1

t
E

[

φ(X(t, x))

∫ t

0

< B−1DhX(s, x), dβ(s) >

]

If B has a bounded inverse then Ptφ is Lipschitz for t > 0, provided φ is bounded measur-
able. The bound depends only on the Lipschitz norm of F . We conclude the strong Feller
property if B is invertible and F is Lipschitz. In fact we have a gradient bound

‖DPtφ‖∞ ≤ C‖φ‖∞√
t
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Irreducibility. Given any x0, x1 ∈ H, τ > 0 and ǫ > 0 we will show that there is a control
u(s) ∈ L2[[0, τ ];K] such that the solution of

x(t) = T (t)x0 +

∫ t

0

T (t − s)F (x(s))ds +

∫ t

0

T (t − s)Bu(s)ds

comes with in ǫ of x1 at time τ . Let us pick z0, z1 ∈ D(A) such that ‖xi − zi‖ ≤ δ for
i = 0, 1. Consider the path z(t) joining z0 and z1 defined by

z(t) =
T − t

T
z0 +

t

T
z1

If we can pick u(t) such that

z′(t) = Az(t) + F (z(t)) + Bu(t)

the solution starting from z0 will end up at z1. By stability the solution starting from x0

will be close to z1 as well. Since z1 is close to x1 this is enough. However range of B is
only dense. So we can only find u(t) such that

z′(t) = Az(t) + F (z(t)) + Bu(t) + δ(t)

with ‖δ(t)‖ ≤ δ. Now if v(t) solves

v′(t) = Av(t) + F (v(t)) + Bu(t)

With w(t) = z(t) − v(t)

w′(t) = Aw(t) + [F (z(t)) − F (w(t))] + δ(t)

Or

w(t) = T (t)w(0) +

∫ t

0

T (t − s)[F (z(s)) − F (v(s))]ds +

∫ t

0

T (t − s)δ(s)ds

It is now easy to deduce from the Lipschitz condition on F that w(T ) is small if w(0) and
δ(s) are small.

Such approximate controllability and the strong Feller property imply irreducibility and
the uniqueness of the invariant measure if it exists. For instance if A is a Borel set and
q(t0, x0, A) > 0 for some t0 > 0 and x0 ∈ H, then q(t0, y, A) ≥ δ > 0 for y in a neighborhood
N of x. The approximate controllability implies that q(t, y, U) > 0 for every y and open
set U . By Chapman-Kolmogorov equations q(t, x, A) > 0 for all x ∈ H and t > t0. This
implies the uniqueness of the invariant measure if it exists.

A simple sufficient condition for the existence of an invariant distribution is the condition

< F (x) − F (y), x− y >≤ c‖x − y‖2

3



with c satisfying ω + c = ω1 < 0, where

‖T (t)x‖ ≤ Ceωt‖x‖

Sketch of Proof: The system is highly contractive. If we denote by x(t), y(t), two
solutions with initial values x and y respectively, then

x(t) − y(t) = T (t)[x − y] +

∫ t

0

T (t − s)[F (x(s))− F (y(s))]ds

and

d

dt
‖x(t) − y(t)‖2

= 2 < x(t) − y(t), F (x(t))− F (y(t)) > +2 < A(x(t) − y(t)), (x(t)− y(t)) >

≤ 2ω1‖x(t) − y(t)‖2

providing an exponential decay for ‖x(t)−y(t)‖. In addition we can also have an estimate
for

E[‖x(1)− x‖2] ≤ C(x)

This means that if we solve with x(−n − 1) = x the solution at time −n differs from x

by C(x). By exponential decay the two solution differ by eω1n at time 0. So the limit of
x(0) with x(−n) = x exists. The noise has to be consistent. The limit then is a random
variable x(0 and its distribution is the invariant measure.

One can verify that the invariant density is absolutely continuous with respect to the
Gaussian when B = I.
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