Multidimensional version of Kolmogorov's Theorem.

Let us do $d=2 . d>2$ is not all that different. We need to interpolate a function from the four corners of a square to its interior. Pretending the square to be $[0,1]^{2}$, the function will be of the form

$$
f\left(x_{1}, x_{2}\right)=a+b x_{1}+c x_{2}+d x_{1} x_{2}
$$

It is linear in each variable. The values on the edge of a square are obtained by linear interpolation from the corners. This guarantees that the function defined on each one for the sub-squares separately matches at the common edges and defines a continuous function on the big square. The comparison between the interpolated functions u_{n}, u_{n+1} at n-th stage and the $n+1$-th stage involves differences at $2^{2 n}$ possible nodes. [This will be $2^{n d}$ in d-dimensions]. As before

$$
\sup _{x}\left|u_{n}(x)-u_{n+1}(x)\right| \leq \max _{1 \leq i \leq c_{d} 2^{2 n}}\left|u\left(x_{i}\right)-u\left(y_{i}\right)\right|
$$

with $\sup _{i}\left|x_{i}-y_{i}\right| \leq 2^{-n} . x_{i}$ is the mid point of an edge at the n-th stage and y_{i} is either end point of that edge. At the n-th stage the number of such comparisons can be bounded by $c_{d} 22 n$ where c_{d} is a simple constant that depnds on the dimension. Now Tchebechev inequality will do the trick provided we have for some $\alpha>0$,

$$
E\left[|u(x)-u(y)|^{\beta}\right] \leq|x-y|^{2+\alpha}
$$

Converse Estimate. We now prove the reverse estimate

Theorem.

$$
\|f\|_{L_{p}(P)} \leq C_{p}\|\Lambda f\|_{1, p}
$$

Proof: This is done by duality. We note that

$$
<-\mathcal{L} f, g>_{L_{2}(P)}=\int_{X}<D f, D g>_{\mathcal{H}}(x) P(d x)
$$

provided f and g are in $\cup_{n} \mathcal{K}_{n}$ i.e. are polynomials. Therefore

$$
<f \mid g>=\int_{X}\left[<D f(x), D g(x)>_{\mathcal{H}}+f(x) g(x)\right] P(d x)
$$

defines an inner product on polynomials.

$$
\begin{aligned}
E^{P}[f g] & =E^{P}\left[\left(\Lambda^{2} f\right)((I-\mathcal{L}) g)\right]=<\Lambda f \mid \Lambda g> \\
& =\int_{X}\left[<(D \Lambda f)(x),(D \Lambda g)(x)>_{\mathcal{H}}+(\Lambda f)(x)(\Lambda g)(x)\right] P(d x)
\end{aligned}
$$

If we now take sup over $g \in L_{q}(P)$, and use the inequalities in the other direction we get the theorem.

Comments on Higher Derivatives.

Suppose $f(\omega)$ is a function on X then the higher derivatives $D^{r} f$ are symmetric r linear functional on \mathcal{H} and can be viewed as a symmetric element of the tensor product $\otimes_{r} \mathcal{H}$ and derives its norm. For instance, for $r=2$, it would be the Hilbert-Schmidt norm, where an element in $\mathcal{H} \otimes \mathcal{H}$ is viewed as a symmetric operator. Now Leibnitz rule applies and

$$
D^{k}(f g)=\sum_{r+s=k} c_{r, s} D^{r} f \otimes D^{s} g
$$

for some coefficients $c_{r, s}$. In particular if $f, g \in \mathcal{S}$, where

$$
\mathcal{S}=\cap_{p, r}\left\{f \in L_{p}(P),\left\|D^{r} f\right\|_{\otimes_{r} \mathcal{H}} \in L_{p}(P)\right\}
$$

then $f g \in \mathcal{S}$.
For each k, the norm

$$
\|f\|_{k, p}=\sum_{0 \leq r \leq k}\left\|D^{r} f\right\|_{L_{p}}
$$

can be shown to be equivalent to the norm $\left\|\Lambda^{-k} f\right\|_{L_{p}}$ i.e

$$
D^{k} \Gamma^{k}
$$

is bounded from $L_{p} \rightarrow L_{p}$.
We cannot use directly the estimates for maps into a Hilbert space because our goal is to estimate $D^{n} \Lambda^{n} f$ with values in $\otimes_{j=1}^{n} \mathcal{H}$ in terms of the scalar function f. The idea is to study some intertwining operators and reduce the problem to the boundedness of $D \Lambda$.

The norms for higher derivatives can be defied inductively, in fact for functions with values in some \mathcal{V}.

$$
\|f\|_{r, p}=\|f\|_{r-1, p}+\|D f\|_{L_{p}\left(P, \mathcal{H}^{\otimes(r-1)} \otimes \mathcal{V}\right)}
$$

Theorem. There exists a constant $c=c(r, p)$ such that

$$
c^{-1}\|f\|_{L_{p}(P)} \leq\left\|\Lambda^{r} f\right\|_{r, p} \leq c\|f\|_{L_{p}(P)}
$$

Proof: Consider the map $\Gamma: \mathcal{D}_{1, p}(X ; \mathcal{V}) \rightarrow L_{p}(P ; \mathcal{V} \oplus(\mathcal{H} \otimes \mathcal{V}))$ defined by

$$
\Gamma f=(f, D f)
$$

Basically by induction

$$
c_{r}^{-1}\|f\|_{p, r} \leq\left\|\Gamma^{r} f\right\|_{L_{p}(P)} \leq c_{r}\|f\|_{p, r}
$$

We construct a $\left.\left.\operatorname{map} A_{k}: L_{p}(P ; \mathcal{V}) \oplus L_{p}(P ; \mathcal{H} \otimes \mathcal{V})\right) \rightarrow L_{p}(P ; \mathcal{V}) \oplus L_{p}(P ; \mathcal{H} \otimes \mathcal{V})\right)$ so that

$$
A_{k} \Gamma=\Lambda^{-k} \Gamma \Lambda^{k}
$$

We seethat in the chaos decomposition D lowers the degree by 1 , so that Γ leaves the first component alone while lowering the degree by one in the second component. Therefore A_{k} can be taken as I in the first component and as mutiplication by $\left(\frac{n+1}{n+2}\right)^{\frac{k}{2}}$ on terms of degree n. We see that

$$
\begin{aligned}
\Gamma^{n} \Lambda^{n} & =\Gamma^{n-1} \Gamma \Lambda^{n-1} \Lambda \\
& =\Gamma^{n-1} \Lambda^{n-1} A_{n-1} \Gamma \Lambda \\
& =(\Gamma \Lambda) A_{1}(\Gamma \Lambda) A_{2} \cdots(\Gamma \Lambda) A_{n-1}(\Gamma \Lambda)
\end{aligned}
$$

Since at each step A_{j} and $\Gamma \Lambda$ are bounded operators in every L_{p} we are done.
Divergence Operator: Given a map $u \in L_{p}(P ; \mathcal{H} \otimes \mathcal{V})$ the divergence $v=D^{*}$ is defined as the map $X \rightarrow \mathcal{V}$ defined by

$$
\int_{X}<f(x), v(x)>_{\mathcal{V}}=\int_{X}<(D f)(x), u(x)>_{\mathcal{H} \otimes \mathcal{V}} P(d x)
$$

for all smooth functions f with values in \mathcal{V}.
Theorem. For $u \in \mathcal{D}_{1, p}, v=D^{*} u$ exists in $L_{p}(P ; \mathcal{V})$. More precisely there is a constant c_{p} such that

$$
\left\|D^{*} u\right\|_{L_{p}(P ; \mathcal{V})} \leq c_{p}\|u\|_{1, p}
$$

Proof:

Commutation relations.

$$
\begin{aligned}
D P_{t} & =e^{-t} P_{t} D \\
D \Lambda^{-1} & =M \Lambda^{-1} D
\end{aligned}
$$

where

$$
M f=\sqrt{\frac{n+1}{n+2}} f
$$

on \mathcal{K}_{n}.
Riesz Transform. If we define $R=D \Lambda: L_{p}(P) \rightarrow L_{p}(P ; \mathcal{H})$, then

$$
\|R f\|_{L_{p}(P ; \mathcal{H})} \leq c_{p}\|f\|_{L_{p}(P)}
$$

We also have

$$
D=R \Lambda^{-1} \quad \text { and } \quad D=\Lambda^{-1} M R
$$

Finally,

$$
\begin{aligned}
\int_{X}<(D f)(x), u(x)>_{\mathcal{H}} P(d x) & =\int_{X}<\left(\Lambda^{-1} M R\right) f(x), u(x)>_{\mathcal{H}} P(d x) \\
& =\int_{X} f(x)\left(R^{*} M \Lambda^{-1}\right) u(x) P(d x)
\end{aligned}
$$

Therefore

$$
D^{*} u=R^{*} M \Lambda^{-1} u
$$

and satisfies the bound

$$
\left\|D^{*} u\right\|_{L_{p}(P)} \leq c_{p}\|u\|_{1, p} .
$$

We can think of a map $A: X \rightarrow H$ as a vector field and its divergence

$$
\delta A=D^{*} A
$$

satisfies

$$
\|\delta A\|_{L_{p}(P)} \leq c_{p}\|A\|_{1, p}
$$

Malliavin Covariance Matrix. Suppose $g(x): X \rightarrow R^{d}$ is a map with $\|g\|_{1, p}<\infty$.
Then

$$
(D g)(x) \in \mathcal{H} \otimes R^{d} \quad \text { a.e. } \quad P
$$

or representing $g=\left\{g_{i}\right\}$ we have for each $i=1, \cdot, d$

$$
\left(D g_{i}\right)(x) \in \mathcal{H} \quad \text { a.e. } \quad P
$$

The Malliavin Covariance Matrix is the symmetric positive semi-definite matrix

$$
\sigma(x)=\sigma_{i, j}(x)=<\left(D g_{i}\right)(x),\left(D g_{j}\right)(x)>_{\mathcal{H}}
$$

exists and is in $L_{\frac{p}{2}}(P)$ provided $p \geq 2$. The map g is called non degenerate if

$$
[\operatorname{det} \sigma(x)]^{-1} \in L_{p}(P)
$$

for every $1 \leq p<\infty$. It is called weakly non degenerate if

$$
\operatorname{det} \sigma(x)>0 \quad \text { a.e. } \quad P
$$

The map $g: X \rightarrow R^{d}$ defines a gradient $(D g)(x)$ which is a linear map $g^{\prime}(x)$ from the tangent space \mathcal{H} of X at x to the tangent space R^{d} of R^{d} at $g(x)$. Then $\sigma(x)=g^{\prime}(x) g^{\prime *}(x)$. Given a map g and a vector field $z=z(y)$ on R^{d} i.e. a map $R^{d} \rightarrow R^{d}$, we can look for a vector field \tilde{Z} on X a lift of z such that

$$
g^{\prime}(x) \tilde{Z}(x)=z(g(x))
$$

In the nondegenerate case this is possible, at least for almost all x. A canonical choice which, for each x, minimizes $\|\tilde{Z}(x)\|_{\mathcal{H}}$ is given by

$$
Z(x)=g^{\prime *}(x)[\sigma(x)]^{-1} z(g(x))
$$

In particular we can lift $\frac{\partial}{\partial y_{k}}$ to

$$
Z_{k}(x)=\sum_{j} \gamma_{k, j}(x) g_{j}^{\prime}(x)
$$

where $\gamma(x)$ is the inverse of $\sigma(x)$.
Smoothness of distributions. Let $g(x)$ be a map into R^{d} that is nondegenerate and smooth in the sense that $\|g\|_{r, p}<\infty$ for all r and p. If $f(y)$ is a smooth function on R^{d}, and $\rho(d y)$ is the distribution $\rho=P g^{-1}=g_{*} P$ we have

$$
\begin{aligned}
\int_{R^{d}} \frac{\partial f}{\partial y_{k}}(y) \rho(d y) & =\int_{X}<D \tilde{f}, Z_{k}>(x) d P \\
& =\int_{X} \tilde{f}(x)\left(\delta Z_{k}\right)(x) d P \\
& =\int_{R^{d}} f(y) v_{k}(y) \rho(d y)
\end{aligned}
$$

where $\tilde{f}=f(g(x))$ is the lifted function f and $v_{k}(y)=E^{P}\left[\delta Z_{k} \mid g(\cdot)\right]$ is the conditional expectation. If we can get estimates on $\left\|\delta Z_{k}\right\|_{L_{p}(P)}$ that will be fine because

$$
\int_{R^{d}}\left|\frac{\partial r}{\partial y_{k}}(y)\right|^{p} r(y) d y=\int_{R^{d}}\left|v_{k}(y)\right|^{p} \rho(d y) \leq \int_{X}\left|\delta Z_{k}(x)\right|^{p} P(d x)
$$

where $\rho(d y)=r(y) d y$.
Calculation of δZ_{k}. From the definition

$$
Z_{k}=\sum_{j} \gamma_{k, j}(x) g_{j}^{\prime}(x)
$$

we can compute

$$
\left(\delta Z_{k}\right)(x)=\sum_{j}<\left[D \gamma_{k, j}\right](x),\left(D g_{j}\right)(x)>+\sum_{j} \gamma_{k, j}(x)\left(\delta D g_{j}\right)(x)
$$

and using the relations

$$
\delta D=-\mathcal{L} \quad \text { and } \quad D \gamma=D \sigma^{-1}=\sigma^{-1}(D a) \sigma^{-1}=\gamma(D a) \gamma
$$

we can write

$$
\begin{aligned}
\left(\delta Z_{k}\right)(x)= & -\sum_{j} \gamma_{k, j}(x)\left(\mathcal{L} g_{j}\right)(x)+\sum_{s, j, i} \gamma_{k, s}(x) \gamma_{j, i}(x)<\left(D \sigma_{s, j}\right)(x),\left(D g_{i}\right)(x)> \\
=- & \sum_{j} \gamma_{k, j}(x)\left(\mathcal{L} g_{j}\right)(x) \\
& +\sum_{s, j, i} \gamma_{k, s}(x) \gamma_{j, i}(x)<\left(D<\left(D g_{s}\right)(\cdot),\left(D g_{j}\right)(\cdot)>\right)(x),\left(D g_{i}\right)(x)> \\
=- & \sum_{j} \gamma_{k, j}(x)\left(\mathcal{L} g_{j}\right)(x)+\sum_{s, j, i} \gamma_{k, s}(x) \gamma_{j, i}(x)\left[\left(D^{2} g_{s}\right)(x)\left[\left(D g_{j}\right)(x),\left(D g_{i}\right)(x)\right]\right] \\
& +\sum_{s, j, i} \gamma_{k, s}(x) \gamma_{j, i}(x)\left[\left(D^{2} g_{j}\right)(x)\left[\left(D g_{s}\right)(x),\left(D g_{i}\right)(x)\right]\right] \\
=- & \sum_{j} \gamma_{k, j}(x)\left(\mathcal{L} g_{j}\right)(x)+\sum_{s, i} \gamma_{k, s}(x)\left[\left(D^{2} g_{s}\right)\left(Z_{i}, D g_{i}\right)\right](x) \\
& +\sum_{j}\left[\left(D^{2} g_{j}\right)\left(Z_{k}, Z_{j}\right)\right](x)
\end{aligned}
$$

Since terms of the form

$$
\left[\left(D^{2} g\right)(u, v)\right](x)
$$

can be estimated by

$$
\left\|\left(D^{2} g\right)(x)\right\|_{\mathcal{H} \otimes \mathcal{H}} \times\|u(x)\|_{\mathcal{H}} \times\|v(x)\|_{\mathcal{H}}
$$

we acn control $\left\|\delta Z_{k}\right\|_{L_{p}(P)}$ by $\|\gamma\|_{L_{p^{\prime}}}(P)$ and $\|g\|_{2, p^{\prime}}$ with large enough p^{\prime}.

