
1. Gaussian Model.

We will be dealing with Gaussian Models. The central object is the Cameron-Martin space

which will be a real Hilbert Space H. There is a probability space (X,F , P ), that can be

thought of as a vector space containing H and there is a linear map h → ξh of H in to

L2(X) that represents H isometrically as Gaussian random variables with mean 0. In

addition H acts by translations on τh : x → x + h on X . These actions are quasi invariant

and if we denote P τ−1
h by Ph then Ph << P and

dPh

dP
= exp[ξh(x) − 1

2
< h, h >]

One can assume the completeness of the model which amounts to the assumption that F
is generated by {ξh : h ∈ H}.

As a probability space we have the Lp spaces on (X,F , P ).

There is a special basis for L2. We can choose a complete orthonormal basis for H and

the corresponding ξj give a sequence of i.i.d. random variables that are standard Gaussians,

and our probability space is essentially equivalent to the product measure of these standard

Gaussians. In individual coordinates we have the basis of Hermite polynomials Hi(ξj). For

any function p(·) : {1, 2, · · ·} → {0, 1, 2 · · ·} that has only finitely many nonzero entries we

can asociate the functions

Hp(·) = ΠiHp(i)(ξi)

and they form a basis for the tensor product. This basis comes naturally graded by ‘degree’

n =
∑

i p(i). The subspaces of Kn degree n are natural closed subspaces that are mutually

orthogonal. Degree 0 space is just the one dimensionl space of constants, degree 1 is a

space is canonically isomorphic to H and the orthogonal sum of all subspaces of degree

n or less is just the space of polynomials in the Gaussian variables of degree less than or

equal to n.

Analysis on the Gaussian Space. The notion of gradients have to be carefully defined.

Thre is no concept of continuity because we have imposed no topology on X . Even if we

could, the natural functions that we want to consider, like solutions to Ito’s equations, will

not be continuous. So we have to live with smoothness in the sense of Sobolev spaces.

We are in infinite dimensions and there is no imbedding theorem and consequently we can

1



have infinite smoothness in the Sobolev sense with out gaining any regularity in the sense

of continuity.

Gradients. We can define the notion of Dh, the directional derivative in the direction of

h ∈ H by demanding that

(Dhf)(x) = lim
ε→0

f(x + εh) − f(x)

ε

exist in Lp. Then look for a representation

(Dhf)(x) =< (Df)(x), h >

for some function on X with values in H. Then Df : X → H is called the gradient.

‖Df‖p
p =

∫

X

||(Df)(x)||pH P (dx)

‖f‖1,p = ‖Df‖Lp
+ ‖f‖Lp

Integration by Parts. We can start with the identity

∫

X

f(x + εh)P (dx) =

∫

X

f(x) exp[εξh(x) − ε2

2
< h, h >]P (dx)

and upon differentiation with respect to ε at ε = 0 we get

∫

X

(Dhf)(x)P (dx) =

∫

X

ξh(x)f(x) P (dx)

Ornstein-Uhlenbeck Semigroup. The following family of operators defines a semigroup

of contractions on any Lp(X).

(Ptf)(x) =

∫

X

f(e−t x +
√

1 − e−2t y)P (dy)

To see the contraction part we remark that if x and y are independent mean 0 Gaussians

with the same distribution then ax + by is again a Gaussian with the same distribution

provided a2 + b2 = 1. The rest is just Holder’s inequality. The semigroup corresponds to

a Markov Process with values in X , but the trajectories of this proces will play no role at

the momemt.
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Generator of the Ornstein-Uhlenbeck Semigroup. From the structure of the inde-

pendence of the Gaussian random variables corresponding to different mutually orthogonal

elements in H, it is clear that

Hp(·) = ΠiHp(i)(ξi)

is an eigenfunction for the OU semigroup

PtHp(·) = e−n tHp(·)

where n is the ‘degree’. The Generator L of the OU process is defined by

LHp(·) = −n Hp(·)

Let us remark that in L2 the semigroup is self adjoint, and the complete spectral resolution

is provided above. We have the resolvent operator

(I − L)−1 =

∫ ∞

0

e−tPtdt

as well as

Λ = (1 − L)−
1

2 =

∫ ∞

0

e−t 1√
π t

Ptdt

that are again contarctions in every Lp for p ≥ 1.

Multiplier Lemma. Consider the operator A that acts on Kn by multiplication by the

scalar (a+n
b+n

)±
1

2 . Then for a, b > 0, A is bounded on every Lp.

Proof. We can assume that b > a. We write

(

a + n

b + n

)± 1

2

=

(

1 − b − a

b + n

)± 1

2

=
∑

cj(b − a)j(b + n)−j

By using the obvious estimates on cj and the fact that b(b −L)−1 is a contraction we are

done.

Theorem (Calderon-Zygmund). For every 1 < p < ∞ there is a constant cp, such that

‖Λf‖1,p ≤ cp‖f‖Lp
.
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Proof. Since Λ is a contraction in every Lp we only need to estimate ‖DΛf‖Lp
. To this

end we calculate ‘explicitly’ DhΛf . There is a singularity at t = 0 that we ignore for the

moment.

DhΛf = Dh

∫ ∞

0

e−t

√
π t

Ptfdt

= Dh

∫ ∞

0

e−t

√
π t

∫

X

f(e−tx +
√

1 − e−2t y)P (dy)dt

=

∫ ∞

0

e−t

√
π t

∫

X

e−t(Dhf)(e−tx +
√

1 − e−2t y)P (dy)dt

=

∫ ∞

0

∫

X

e−t

√
π t

e−t

√
1 − e−2t

(Dy
hf)(e−tx +

√

1 − e−2t y)P (dy)dt

=

∫ ∞

0

∫

X

e−t

√
π t

e−t

√
1 − e−2t

ξh(y)f(e−tx +
√

1 − e−2t y)P (dy)dt

We double up the integral from [−∞,∞] and use the invariance of P under the map

y → −y as well as the oddness of ξh(y). Then with ε(t) = t
|t| ,

(DhΛf)(x) =
1

2

∫ ∞

−∞

∫

X

e−|t|ε(t)
√

π |t|
e−|t|

√
1 − e−2|t|

ξh(y)f(e−|t|x + ε(t)
√

1 − e−2|t| y)P (dy)dt

= 〈ξh(·) , u(x , ·)〉L2(P )

In other words with the identification of K1 with H,

(DΛf)(x) = P1u(x , ·)

We need the following lemma.

Lemma. If we denote by P1 the orthogonal projection in L2(P ) on to the subspace K1 of

dgeree 1, then for any 1 < p < ∞, there is a finite constant Cp such that

‖P1f‖Lp(P ) ≤ Cp‖f‖Lp(P )

Proof: For p ≥ 2 since P1f is Gaussian

‖P1f‖Lp(P ) ≤ Cp ‖P1f‖L2(P ) ≤ Cp‖f‖L2(P ) ≤ Cp ‖f‖Lp(P )

The inequality for 1 < p ≤ 2 is derived by duality, with Cp = Cq. Actually a similar

estimate is valid for the projection Pn on to Kn, the subspace of ‘degree’ n. The proof

depends on the following elementary computation.
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Lemma. There is a constant C(n, p) such that for f ∈ ∪n
j=1Kj

‖f‖Lp(P ) ≤ C(n, p)‖f‖L2(P )

Proof: It is sufficient to show the existence of a constant Cn such that for f ∈ ∪n
j=1Kj

‖f2‖L2(P ) ≤ Cn ‖f‖2
L2(P )

To this end we can write

f =
∑

deg p(·)≤n

Ap(·)[⊗jH
j

p(j)]

where H
j

r is the normalized Hermite polynomial of degree r in the variable xj. Then

f2 =
∑

deg p(·)≤n

∑

deg q(·)≤n

Ap(·) Aq(·) ⊗j H
j

p(j)H
j

q(j)

=
∑

deg p(·)≤n

∑

deg q(·)≤n

Ap(·) Aq(·) ⊗j

[

∑

r

a(p(j), q(j), r)H
j

r

]

=
∑

deg r(·)≤2n

Br(·) ⊗j H
j

r(j)

with
Br(·) =

∑

p(·),q(·)

Ap(·) Aq(·)

∏

j

a(p(j), q(j), r(j))

=
∑

p(·),q(·)

Ap(·) Aq(·) C(p(·) , q(·) , r(·))

Note that a(p, q, r) = 0 unless p + q ≥ r. Therefore for each p(·) and q(·) of degree n there

are atmost some k(n) terms that are nonvanishing in the last sum and there is a uniform

bound Cn on on |C(· , · , ·)|. Therefore

‖f2‖2
L2(P ) =

∑

r(·)

|Br(·)|2 ≤ C2
n k(n)

(

∑

p(·)

|Ap(·)|2
)2

= C2
n k(n)‖f‖4

L2(P ).

Proceeding with our proof, because

‖(DΛf)(x)‖H = ‖P1u(x , ·)‖L2(P ),

from the previous lemma,
∫

X

‖(DΛf)(x)‖p
HP (dx) ≤ Cp

∫

X

∫

X

|u(x , y)|pP (dx)P (dy)
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After the substitution |t| = log sec θ, u(x , y) can be represented as

u(x , y) =
1

2

∫ ∞

−∞

e−|t|ε(t)
√

π |t|
e−|t|

√
1 − e−2|t|

f(e−|t|x + ε(t)
√

1 − e−2|t| y)dt

=

∫ π

2

−π

2

f(sin θ x + cos θ y)k(θ) dθ

with

k(θ) =
1

2
√

π

cos θ ε(θ)√
log sec θ

= c k0(θ) + k1(θ)

Here, c is a positive constant, k0(θ) is the singular kernel representing the Hilbert transform

and k1(·) is a bounded function. If we write the corresponding decomposition

u(x , y) = u0(x , y) + u1(x , y)

for p ≥ 1, since we have a L∞ bound on k1(·),
∫

X

∫

X

∣

∣u1(x , y)
∣

∣

p
P (dx)P (dy)

=

∫

X

∫

X

∣

∣

∣

∣

∫ π

2

−π

2

f(cos θ x + sin θ y)k1(θ) dt

∣

∣

∣

∣

p

P (dx)P (dy)

≤ C
1

2π

∫ π

2

−π

2

∫

X

∫

X

∣

∣

∣

∣

f(cos θ x + sin θ y)

∣

∣

∣

∣

p

P (dx)P (dy)dt

= C

∫

X

∣

∣

∣

∣

f(cos θ x + sin θ y)

∣

∣

∣

∣

p

P (dx)

by the rotational invariance of the product Gaussian. As for the Hilbert transform term

u0(x , y) we can write

u0(cos θ x + sin θ y,− sin θ x + cos θ y) =

∫ π

2

−π

2

f(cos θ′ x + sin θ′ y)ko(θ − θ′)dθ′

and
∫

X

∫

X

∣

∣u0(x , y)
∣

∣

p
P (dx)P (dy)

=

∫

X

∫

X

1

2π

∫ π

2

−π

2

∣

∣u0(cos θ x + sin θ y,− sin θ x + cos θ y)
∣

∣

p
P (dx)P (dy)dθ

≤ Cp

∫

X

∫

X

1

2π

∫ π

2

−π

2

∣

∣f(cos θ x + sin θ y)
∣

∣

p
P (dx)P (dy)dθ

= Cp

∫

X

∣

∣f(x)
∣

∣

p
P (dx)
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and we are done.

Remark 1. We have ignored the singularity. From a technical viewpoint we should have

cut off near the singularity and passed to the limit with uniform bounds.

Remark 2. Since ‖Λf‖Lp(P ) ≤ ‖f‖Lp(P ) we have ‖Λf‖1,p ≤ Cp‖f‖Lp(P ).

Remark 3. It is not clear that if ‖f‖1,p < ∞,

lim
ε→0

1

ε
[f(x + ε h) − f(x)]

necessarily make sense in Lp(P ). Why is f(x + ε h) in Lp(P )? It is therefore better to

work with ∩pLp(P ) and complete in the various ‖ · ‖r,p norms.

Remark 4. We can consider functions f with values in a Hilbert Space V. If we take a

model with V for its Cameron-Martin space, then f can be identified with scalar functions

f(x, v) that are linear in v. The new D has two components, in the original H directions

and the new V directions. The new Λ views the functions differently, essentially increasing

the degree by 1, because of tensoring with the linear functions, that have one extra degree.

Because of the multiplier theorem the two are essentially equivalent on Lp spaces. The

result for V valued functions can be read off from the result on scalar functions of both

sets of variables, although our interest is only in functions that are linear in the second

set.
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