Lemma 1. Consider a positive definite symmetric matrix A.

1 dS
Det A)"2 = ¢, —
(Det A) c /Snl [< s,As >]2

Proof:
(Det A)_% — (QW)%/ o <o.Ao> i
Rn
- (QW)% / e_ﬂ%?‘n_ldsdr
Sn—1

—c/ ds
" Jano1 [< s, As >)E

It is therefore sufficient to estimate for each k,

sup E[< z, Az >7F] < ¢,

:|z|||=1
to yield an estimate of the form

E[(Det A)7*] < B,

Weak formulation. With out estimates.

Let us note that the Malliavin covariance A(t) has the form

A(t)z/o B(s,t,w)a(z(s))B*(s,t,w)ds

with B(s,t,w) being the Jacobian of the map R™ — R™ that maps the initial point x =
z(s,w) in R™ to x(t) € R™. The problem with A(t) is that B(s,t,w) is NOT progressively
measurable. Moreover intrinsically A(¢) is a quadratic form on the cotangent space at
z(t,w). We can instead look at B(0,t,w) *A(t)B(0,t,w)~! *. Since Det B(0,t,w) and its
inverse will have moments of all orders, we can try to show that

C(t) = B(0,t,w) 'A(t)B(0,t,w)" ' *

has a nice inverse. C(t) has a better representation, B(0, s,w) being progressively measur-
able.

t
Ct) = / B(0, 5,) " "a(x(s)) B(0, 5,w) " *ds
0
Suppose C(1)x = 0 for some = {z;}. Then denoting by h; ;(s,w) = (B(0, s,w)_l)i,j we

have
Z hi j(s,w)zio;r(x(s)) =0
2%}
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for k =1,2,...n. If we think of 0, ;(z) as vector fields X (x), then

inqi,k(s,w) =0
for k=1,2,...n, where

Zaziqi7k(s,w) =<z, h(s,w)Xg(z(s)) >

Now
£(s) =<z, h(s,w)Xg(z(s)) >

is a semi-martingale and we can compute the Stratonovich differential

do (h(s,w)Xk(x(s)) = [do h(s,w)| Xp(x(s)) + h(s,w)|d o Xi(x(s))]
= Z err(s,w)odfBr(s)+ exo(s,w)ds

One can compute easily
ekr(s) = h(s)[=X; Xy + X X, (2(s)) = h(s)[ Xk, Xr](2(s))

and
er0(s,w) = h(s)[—Xo X + X Xo|(x(s)) = h(s)[ Xk, Xo](z(s))

One knows from the uniqueness in Doob-Meyer decomposition that if
d§ = dM(t) +b(t)dt =0

then M (t) =0 and b(t) = 0. Moreover if

dM(t) =) " e;j(s)dB;(s)

Therefore ey, , are equal to 0. The induction proceeds. By Blumenthal zero-one law if the
determinant is zero for a positive time, then it is so with probability one and there is a
deterministic direction in which it is degenerate. That direction is orthogonal to all the

vectors generated by all the Lie brackets.

Quantitative version.

We will estimate E[X ~*] by estimating E[e~*¥] and integrating

E[X ) = ﬁ /E[e‘AX])\k_l dr

We will fix M a bound on ¢ and b as well as the time interval [0,7]. C(T, M) will stand

for a constant that may depend on M and T but independent of \.
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Lemma 1. Let £(¢) be a stochastic integral

t t
Et)==x -l-/ o(s)-dp(s) +/ b(s)ds
0 0
such that
lo(s)| <M and |b(s)|< M
Then for any A > 0,

[exp A g 5)ds +— Otaz(s)dsﬂ <C(t)

Proof. Consider the function

A2 1 1
Ult,z) =exp|— i tanh AMt + ZF()\Mt) + =t

2
where N
F(x) = / [1 — tanh z]dx = = — log cosh z < log2
0
Then )
x
)\2 2 5 by
Upr = U| e tanh” AMt — mtanh)\Mt]
2,.2 M 1
U, = U[—)\szech2)\Mt + %(1 — tanh AM¢) + 3]
o? A2z? Ao?
S, [ Use +0Us = = U+ U
o] <M
A2? Nz?2  AM Az
< U[ZZ tanh? AMt — f + S (L= tanh AMY) + %
A2z? 9 Nz?2  AM 1
< — 77 (1 =
<U| ;- tanh®AME — —— 4 == (1 — tanh AM¢) + 2}
Therefore .
Zy =U(T —t,&(t)) exp|—— S s)ds + — 02(3)ds]

is a super martingale.
E[Zr] < E[Z)]

Let £(t) as before be

tanh )\Mt]



and denote by

so that

Assume that
o(s)=lle(s)]| <M a.e.

and
|b(s)| < M a.e.

Lemma 2. We have
T T
E [exp [)\/ In(s)|ds — A2 T2/ UQ(S)dS]] <C.
0 0

Proof. Apply Doob’s inequality to the non negative martingale

A2t
exp [An(t) — —/ o*(s)ds]
2 Jo
to get

p [exp [OzttlgT[M(t) - %Z/Ot o?(s)ds]] > 4 <

and for A\ > 0, replacing A by 2 A,

T
P |exp [2\ sup 7(t) —2)\2/ o?(s)ds] 2€] §1
0<t<T 0 14
This leads to
T
E |exp [\ sup |77(t)|—)\2/ 0'2(S>dSH <C
0<t<T 0
and
by T T
E |exp [—/ |n(8)|d8—)\2/ o?(s)ds]]| <C
T Jo 0

and replacing A by AT,

E

exp P\/o \n(s)\ds—)\QTQ/O UZ(S)dS]]] <C



Lemma 3. For any A > 0,

Blow (-1t [ a5 [ e+ 2 [ s+ [ 18]

< C(T)

Proof: We have by the earlier lemma, for any p > 0

T

02(s)ds]] < C(T)

exp ——/ § ds—l——

0

By Schwarz’s inequality, in combination with Lemma 2, with the choice of yu = 4M\2T?

E [exp[—4M)\2T2/0 €2(s)ds + A2T /0 02(8)d5+%/0 m(s)\ds}] < o)

This in turn implies

22 g 2 A ’ NTE 2 A ' s)|ds
E{exp[—élM)\ T /0 £4(s)ds 2/0 1€(s)|ds + 5 /0 o“(s)ds + 2/0 |B(s)|d ]}
< C(T)

If X and Y are two random variables such that

Elexp[—aX +0Y]| < C

then
E :exp[—gX]] —E [exp[—gx v gy . gY]} < V/C[E [exp[-bY]]]?
Therefore
i oma [ 42 e
E_exp [—2MN*T /0 £°(s)ds — Z/o |§(s)|ds]}

< C(T)E[exp - /OT )\22T202(8)d8 - %/OT |B(s)|ds}]%

T T
AMAZT? /O 52(s)ds+% /O 1€(s)|ds

<2M)\2T2/£ ds+—

/ &(

1
<2M)\2T2/ £2(s)ds + 2T / £2(s) ds+3—2

1
<2)\2T(1+MT/§ ds+§
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Therefore

E|exp [-2X*T(1 + MT) / TgQ dsﬂ

SC’(T)E{eXp[ AZQTQ/ ds——/ |B(s |ds}

<cmpleo[- X7 [ o]

and E{exp[ 20T (1+MT/ e ds}
[eXp —_/ B(s) |ds]
V() 2*da S ke p—
/ d</1 %d;/ - doo N
< [/0 u(z) x dl’] 1+ {/1 332} {/1 u(ggfgg + da:}
: {/OOO " xzkdw} K [/OOO u(z) x2k+2da:] ’
Therefore
EMT%MS]_ }<C<T KJE |1+ /OTa%s)dS]%;B]
and

1+

—(2k+3)7] 2
/ B(s |ds] }

B H [ imtsyas] k]
B H [ s k]

6

{/g )ds] %}<OTI<:)E

The final step is to estimate

in terms of



where ¢
B(t) = x—f—/ b(s)ds
0

Should depend on the simple estimate (Sobolev)

161l 10,71 < C (1Bl Lajo,r)* (ol 210,77

/ / |t dtds
— 8 4

O = HbHHg[o,T]

First if we consider

then

with p =2 and a =

0ol

E[0"] < O(T k)

and one can get
Ibll 210,77 < CTO (Bl Lyj0,))"

for some a > 0.



