Lemma 1. Consider a positive definite symmetric matrix A.

$$
(\operatorname{Det} A)^{-\frac{1}{2}}=c_{n} \int_{S^{n-1}} \frac{d s}{[<s, A s>]^{\frac{n}{2}}}
$$

Proof:

$$
\begin{aligned}
(\text { Det } A)^{-\frac{1}{2}} & =(2 \pi)^{\frac{n}{2}} \int_{R^{n}} e^{-\frac{\langle x, A x\rangle}{2}} d x \\
& =(2 \pi)^{\frac{n}{2}} \int_{S^{n-1}} e^{-r^{2} \frac{\langle s, A s\rangle}{2}} r^{n-1} d s d r \\
& =c_{n} \int_{S^{n-1}} \frac{d s}{[<s, A s>]^{\frac{n}{2}}}
\end{aligned}
$$

It is therefore sufficient to estimate for each k,

$$
\sup _{x:\|x\|=1} E\left[<x, A x>^{-k}\right] \leq C_{k}
$$

to yield an estimate of the form

$$
E\left[(\text { Det } A)^{-k}\right] \leq B_{k}
$$

Weak formulation. With out estimates.

Let us note that the Malliavin covariance $A(t)$ has the form

$$
A(t)=\int_{0}^{t} B(s, t, \omega) a(x(s)) B^{*}(s, t, \omega) d s
$$

with $B(s, t, \omega)$ being the Jacobian of the map $R^{n} \rightarrow R^{n}$ that maps the initial point $x=$ $x(s, \omega)$ in R^{n} to $x(t) \in R^{n}$. The problem with $A(t)$ is that $B(s, t, \omega)$ is NOT progressively measurable. Moreover intrinsically $A(t)$ is a quadratic form on the cotangent space at $x(t, \omega)$. We can instead look at $B(0, t, \omega)^{-1} A(t) B(0, t, \omega)^{-1 *}$. Since Det $B(0, t, \omega)$ and its inverse will have moments of all orders, we can try to show that

$$
C(t)=B(0, t, \omega)^{-1} A(t) B(0, t, \omega)^{-1 *}
$$

has a nice inverse. $C(t)$ has a better representation, $B(0, s, \omega)$ being progressively measurable.

$$
C(t)=\int_{0}^{t} B(0, s, \omega)^{-1} a(x(s)) B(0, s, \omega)^{-1 *} d s
$$

Suppose $C(1) x=0$ for some $x=\left\{x_{i}\right\}$. Then denoting by $h_{i, j}(s, \omega)=\left(B(0, s, \omega)^{-1}\right)_{i, j}$ we have

$$
\sum_{i, j} h_{i, j}(s, \omega) x_{i} \sigma_{j, k}(x(s)) \equiv 0
$$

for $k=1,2, \ldots n$. If we think of $\sigma_{j, k}(x)$ as vector fields $X_{k}(x)$, then

$$
\sum_{i} x_{i} q_{i, k}(s, \omega) \equiv 0
$$

for $k=1,2, \ldots n$, where

$$
\sum_{i} x_{i} q_{i, k}(s, \omega)=<x, h(s, \omega) X_{k}(x(s))>
$$

Now

$$
\xi(s)=<x, h(s, \omega) X_{k}(x(s))>
$$

is a semi-martingale and we can compute the Stratonovich differential

$$
\begin{aligned}
d \circ\left(h(s, \omega) X_{k}(x(s))\right. & =[d \circ h(s, \omega)] X_{k}(x(s))+h(s, \omega)\left[d \circ X_{k}(x(s))\right] \\
& =\sum_{r} e_{k, r}(s, \omega) \circ d \beta_{r}(s)+e_{k, 0}(s, \omega) d s
\end{aligned}
$$

One can compute easily

$$
e_{k, r}(s)=h(s)\left[-X_{r} X_{k}+X_{k} X_{r}\right](x(s))=h(s)\left[X_{k}, X_{r}\right](x(s))
$$

and

$$
e_{k, 0}(s, \omega)=h(s)\left[-X_{0} X_{k}+X_{k} X_{0}\right](x(s))=h(s)\left[X_{k}, X_{0}\right](x(s))
$$

One knows from the uniqueness in Doob-Meyer decomposition that if

$$
d \xi=d M(t)+b(t) d t \equiv 0
$$

then $M(t) \equiv 0$ and $b(t) \equiv 0$. Moreover if

$$
d M(t)=\sum e_{j}(s) d \beta_{j}(s)
$$

Therefore $e_{k, r}$ are equal to 0 . The induction proceeds. By Blumenthal zero-one law if the determinant is zero for a positive time, then it is so with probability one and there is a deterministic direction in which it is degenerate. That direction is orthogonal to all the vectors generated by all the Lie brackets.

Quantitative version.

We will estimate $E\left[X^{-k}\right]$ by estimating $E\left[e^{-\lambda X}\right]$ and integrating

$$
E\left[X^{-k}\right]=\frac{1}{\Gamma(k)} \int E\left[e^{-\lambda X}\right] \lambda^{k-1} d \lambda
$$

We will fix M a bound on σ and b as well as the time interval $[0, T] . C(T, M)$ will stand for a constant that may depend on M and T but independent of λ.

Lemma 1. Let $\xi(t)$ be a stochastic integral

$$
\xi(t)=x+\int_{0}^{t} \sigma(s) \cdot d \beta(s)+\int_{0}^{t} b(s) d s
$$

such that

$$
|\sigma(s)| \leq M \quad \text { and } \quad|b(s)| \leq M
$$

Then for any $\lambda \geq 0$,

$$
E\left[\exp \left[-\frac{\lambda^{2}}{4} \int_{0}^{t} \xi^{2}(s) d s+\frac{\lambda}{4 M} \int_{0}^{t} \sigma^{2}(s) d s\right]\right] \leq C(t)
$$

Proof. Consider the function

$$
U(t, x)=\exp \left[-\frac{\lambda x^{2}}{4 M} \tanh \lambda M t+\frac{1}{4} F(\lambda M t)+\frac{1}{2} t\right]
$$

where

$$
F(x)=\int_{0}^{x}[1-\tanh x] d x=x-\log \cosh x \leq \log 2
$$

Then

$$
\begin{gathered}
U_{x}=U\left[-\frac{\lambda x}{2 M} \tanh \lambda M t\right] \\
U_{x x}=U\left[\frac{\lambda^{2} x^{2}}{4 M^{2}} \tanh ^{2} \lambda M t-\frac{\lambda}{2 M} \tanh \lambda M t\right] \\
U_{t}=U\left[-\frac{\lambda^{2} x^{2}}{4} \operatorname{sech}^{2} \lambda M t+\frac{\lambda M}{4}(1-\tanh \lambda M t)+\frac{1}{2}\right] \\
\sup _{\substack{0 \leq \sigma \leq M \\
|b| \leq M}}\left[\frac{\sigma^{2}}{2} U_{x x}+b U_{x}-\frac{\lambda^{2} x^{2}}{4} U+\frac{\lambda \sigma^{2}}{4 M} U\right] \\
\leq U\left[\frac{\lambda^{2} x^{2}}{8} \tanh ^{2} \lambda M t-\frac{\lambda^{2} x^{2}}{4}+\frac{\lambda M}{4}(1-\tanh \lambda M t)+\frac{\lambda|x|}{2} \tanh \lambda M t\right] \\
\leq U\left[\frac{\lambda^{2} x^{2}}{4} \tanh ^{2} \lambda M t-\frac{\lambda^{2} x^{2}}{4}+\frac{\lambda M}{4}(1-\tanh \lambda M t)+\frac{1}{2}\right] \\
=U t
\end{gathered}
$$

Therefore

$$
Z_{t}=U(T-t, \xi(t)) \exp \left[-\frac{\lambda^{2}}{4} \int_{0}^{t} \xi^{2}(s) d s+\frac{\lambda}{4 M} \int_{0}^{t} \sigma^{2}(s) d s\right]
$$

is a super martingale.

$$
E\left[Z_{T}\right] \leq E\left[Z_{0}\right]
$$

Let $\xi(t)$ as before be

$$
\xi(t)=x+\int_{0}^{t}<e(s) \cdot d \beta(s)>+\int_{0}^{t} b(s) d s
$$

and denote by

$$
\begin{gathered}
\eta(t)=x+\int_{0}^{t}<e(s) \cdot d \beta(s)>d s \\
B(t)=\int_{0}^{t} b(s) d s
\end{gathered}
$$

so that

$$
\xi(t)=x+\eta(t)+B(t)
$$

Assume that

$$
\sigma(s)=\|e(s)\| \leq M \quad \text { a.e. }
$$

and

$$
|b(s)| \leq M \quad \text { a.e. }
$$

Lemma 2. We have

$$
E\left[\exp \left[\lambda \int_{0}^{T}|\eta(s)| d s-\lambda^{2} T^{2} \int_{0}^{T} \sigma^{2}(s) d s\right]\right] \leq C
$$

Proof. Apply Doob's inequality to the non negative martingale

$$
\exp \left[\lambda \eta(t)-\frac{\lambda^{2}}{2} \int_{0}^{t} \sigma^{2}(s) d s\right]
$$

to get

$$
P\left[\exp \left[\sup _{0 \leq t \leq T}\left[\lambda \eta(t)-\frac{\lambda^{2}}{2} \int_{0}^{t} \sigma^{2}(s) d s\right]\right] \geq \ell\right] \leq \frac{1}{\ell}
$$

and for $\lambda \geq 0$, replacing λ by 2λ,

$$
\left.P\left[\exp \left[2 \lambda \sup _{0 \leq t \leq T} \eta(t)-2 \lambda^{2} \int_{0}^{T} \sigma^{2}(s) d s\right]\right] \geq \ell\right] \leq \frac{1}{\ell}
$$

This leads to

$$
\left.E\left[\exp \left[\lambda \sup _{0 \leq t \leq T}|\eta(t)|-\lambda^{2} \int_{0}^{T} \sigma^{2}(s) d s\right]\right]\right] \leq C
$$

and

$$
\left.E\left[\exp \left[\frac{\lambda}{T} \int_{0}^{T}|\eta(s)| d s-\lambda^{2} \int_{0}^{T} \sigma^{2}(s) d s\right]\right]\right] \leq C
$$

and replacing λ by λT,

$$
\left.E\left[\exp \left[\lambda \int_{0}^{T}|\eta(s)| d s-\lambda^{2} T^{2} \int_{0}^{T} \sigma^{2}(s) d s\right]\right]\right] \leq C
$$

Lemma 3. For any $\lambda \geq 0$,

$$
\begin{gathered}
E\left[\exp \left[-4 M \lambda^{2} T^{2} \int_{0}^{T} \xi^{2}(s) d s-\frac{\lambda}{2} \int_{0}^{T}|\xi(s)| d s+\frac{\lambda^{2} T^{2}}{2} \int_{0}^{T} \sigma^{2}(s) d s+\frac{\lambda}{2} \int_{0}^{T}|B(s)| d s\right]\right] \\
\leq C(T)
\end{gathered}
$$

Proof: We have by the earlier lemma, for any $\mu>0$

$$
E\left[\exp \left[-\frac{\mu^{2}}{4} \int_{0}^{T} \xi^{2}(s) d s+\frac{\mu}{4 M} \int_{0}^{T} \sigma^{2}(s) d s\right]\right] \leq C(T)
$$

By Schwarz's inequality, in combination with Lemma 2, with the choice of $\mu=4 M \lambda^{2} T^{2}$

$$
E\left[\exp \left[-4 M \lambda^{2} T^{2} \int_{0}^{T} \xi^{2}(s) d s+\frac{\lambda^{2} T^{2}}{2} \int_{0}^{T} \sigma^{2}(s) d s+\frac{\lambda}{2} \int_{0}^{T}|\eta(s)| d s\right]\right] \leq C(T)
$$

This in turn implies

$$
\begin{aligned}
E\left[\operatorname { e x p } \left[-4 M \lambda^{2} T^{2} \int_{0}^{T} \xi^{2}(s) d s\right.\right. & \left.\left.-\frac{\lambda}{2} \int_{0}^{T}|\xi(s)| d s+\frac{\lambda^{2} T^{2}}{2} \int_{0}^{T} \sigma^{2}(s) d s+\frac{\lambda}{2} \int_{0}^{T}|B(s)| d s\right]\right] \\
& \leq C(T)
\end{aligned}
$$

If X and Y are two random variables such that

$$
E[\exp [-a X+b Y]] \leq C
$$

then

$$
E\left[\exp \left[-\frac{a}{2} X\right]\right]=E\left[\exp \left[-\frac{a}{2} X+\frac{b}{2} Y-\frac{b}{2} Y\right]\right] \leq \sqrt{C}[E[\exp [-b Y]]]^{\frac{1}{2}}
$$

Therefore

$$
\begin{gathered}
E\left[\exp \left[-2 M \lambda^{2} T^{2} \int_{0}^{T} \xi^{2}(s) d s-\frac{\lambda}{4} \int_{0}^{T}|\xi(s)| d s\right]\right] \\
\leq C(T) E\left[\exp \left[-\int_{0}^{T} \frac{\lambda^{2} T^{2}}{2} \sigma^{2}(s) d s-\frac{\lambda}{2} \int_{0}^{T}|B(s)| d s\right]\right]^{\frac{1}{2}} \\
2 M \lambda^{2} T^{2} \int_{0}^{T} \xi^{2}(s) d s+\frac{\lambda}{4} \int_{0}^{T}|\xi(s)| d s \\
\leq 2 M \lambda^{2} T^{2} \int_{0}^{T} \xi^{2}(s) d s+\frac{\lambda \sqrt{T}}{4}\left[\int_{0}^{T} \xi^{2}(s) d s\right]^{\frac{1}{2}} \\
\leq 2 M \lambda^{2} T^{2} \int_{0}^{T} \xi^{2}(s) d s+2 \lambda^{2} T \int_{0}^{T} \xi^{2}(s) d s+\frac{1}{32} \\
\leq 2 \lambda^{2} T(1+M T) \int_{0}^{T} \xi^{2}(s) d s+\frac{1}{32}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& E\left[\exp \left[-2 \lambda^{2} T(1+M T) \int_{0}^{T} \xi^{2}(s) d s\right]\right] \\
& \quad \leq C(T) E\left[\exp \left[-\frac{\lambda^{2} T^{2}}{2} \int_{0}^{T} \sigma^{2}(s) d s-\frac{\lambda}{2} \int_{0}^{T}|B(s)| d s\right]\right]^{\frac{1}{2}} \\
& \quad \leq C(T) E\left[\exp \left[-\frac{\lambda^{2} T^{2}}{2} \int_{0}^{T} \sigma^{2}(s) d s\right]\right]^{\frac{1}{2}}
\end{aligned}
$$

and

$$
\begin{gathered}
E\left[\exp \left[-2 \lambda^{2} T(1+M T) \int_{0}^{T} \xi^{2}(s) d s\right]\right] \\
\leq C(T) E\left[\exp \left[-\frac{\lambda}{2} \int_{0}^{T}|B(s)| d s\right]\right]^{\frac{1}{2}} \\
\int_{0}^{\infty} e^{-A x^{2}} x^{k} d x=\frac{1}{2} \int_{0}^{\infty} e^{-A y} y^{\frac{k-1}{2}} d y=\frac{\Gamma\left(\frac{k+1}{2}\right)}{2} A^{-\frac{k+1}{2}} \\
\int_{0}^{\infty} \sqrt{(u(x))} x^{k} d x \leq \int_{0}^{1} \sqrt{(u(x))} x^{k} d x+\int_{1}^{\infty} \sqrt{(u(x))} x^{k} d x \\
\leq\left[\int_{0}^{1} u(x) x^{2 k} d x\right]^{\frac{1}{2}}+\left[\int_{1}^{\infty} \frac{d x}{x^{2}}\right]^{\frac{1}{2}}\left[\int_{1}^{\infty} u(x) x^{2 k+2} d x\right]^{\frac{1}{2}} \\
=\left[\int_{0}^{\infty} u(x) x^{2 k} d x\right]^{\frac{1}{2}}+\left[\int_{0}^{\infty} u(x) x^{2 k+2} d x\right]^{\frac{1}{2}}
\end{gathered}
$$

Therefore

$$
E\left[\left[\int_{0}^{T} \xi^{2}(s) d s\right]^{-\frac{k+1}{2}}\right] \leq C(T, k) E\left[1+\left[\int_{0}^{T} \sigma^{2}(s) d s\right]^{-\frac{2 k+3}{2}}\right]^{\frac{1}{2}}
$$

and

$$
E\left[\left[\int_{0}^{T} \xi^{2}(s) d s\right]^{-\frac{k+1}{2}}\right] \leq C(T, k) E\left[1+\left[\int_{0}^{T}|B(s)| d s\right]^{-(2 k+3)}\right]^{\frac{1}{2}}
$$

The final step is to estimate

$$
E\left[\left[\int_{0}^{T}|B(s)| d s\right]^{-2 k}\right]
$$

in terms of

$$
E\left[\left[\int_{0}^{T}|b(s)|^{2} d s\right]^{-k}\right]
$$

where

$$
B(t)=x+\int_{0}^{t} b(s) d s
$$

Should depend on the simple estimate (Sobolev)

$$
\|b\|_{L_{2}[0, T]} \leq C_{T}\left(\|B\|_{L_{1}[0, T]}\right)^{a}\left(\|b\|_{H_{\alpha}^{p}[0, T]}\right)^{1-a}
$$

First if we consider

$$
\Theta^{2}=\int_{0}^{T} \int_{0}^{T} \frac{|b(t)-b(s)|^{2}}{|t-s|^{\frac{7}{4}}} d t d s
$$

then

$$
\Theta=\|b\|_{H_{\alpha}^{p}[0, T]}
$$

with $p=2$ and $\alpha=\frac{3}{8}$.

$$
E\left[\Theta^{k}\right] \leq C(T, k)
$$

and one can get

$$
\|b\|_{L_{2}[0, T]} \leq C_{T} \Theta^{1-a}\left(\|B\|_{L_{1}[0, T]}\right)^{a}
$$

for some $a>0$.

