Lemma 1. Consider a positive definite symmetric matrix A.

$$(Det A)^{-\frac{1}{2}} = c_n \int_{S^{n-1}} \frac{ds}{[\langle s, As \rangle]^{\frac{n}{2}}}$$

Proof:

$$(Det A)^{-\frac{1}{2}} = (2\pi)^{\frac{n}{2}} \int_{R^n} e^{-\frac{\langle x, Ax \rangle}{2}} dx$$
$$= (2\pi)^{\frac{n}{2}} \int_{S^{n-1}} e^{-r^2 \frac{\langle s, As \rangle}{2}} r^{n-1} ds dr$$
$$= c_n \int_{S^{n-1}} \frac{ds}{[\langle s, As \rangle]^{\frac{n}{2}}}$$

It is therefore sufficient to estimate for each k,

$$\sup_{x:||x|||=1} E[\langle x, Ax \rangle^{-k}] \le C_k$$

to yield an estimate of the form

$$E[(Det A)^{-k}] \leq B_k$$

Weak formulation. With out estimates.

Let us note that the Malliavin covariance A(t) has the form

$$A(t) = \int_0^t B(s, t, \omega) a(x(s)) B^*(s, t, \omega) ds$$

with $B(s,t,\omega)$ being the Jacobian of the map $R^n\to R^n$ that maps the initial point $x=x(s,\omega)$ in R^n to $x(t)\in R^n$. The problem with A(t) is that $B(s,t,\omega)$ is NOT progressively measurable. Moreover intrinsically A(t) is a quadratic form on the cotangent space at $x(t,\omega)$. We can instead look at $B(0,t,\omega)^{-1}A(t)B(0,t,\omega)^{-1}$. Since $Det\ B(0,t,\omega)$ and its inverse will have moments of all orders, we can try to show that

$$C(t) = B(0, t, \omega)^{-1} A(t) B(0, t, \omega)^{-1} *$$

has a nice inverse. C(t) has a better representation, $B(0, s, \omega)$ being progressively measurable.

$$C(t) = \int_0^t B(0, s, \omega)^{-1} a(x(s)) B(0, s, \omega)^{-1} *ds$$

Suppose C(1)x = 0 for some $x = \{x_i\}$. Then denoting by $h_{i,j}(s,\omega) = (B(0,s,\omega)^{-1})_{i,j}$ we have

$$\sum_{i,j} h_{i,j}(s,\omega)x_i\sigma_{j,k}(x(s)) \equiv 0$$

for k = 1, 2, ...n. If we think of $\sigma_{j,k}(x)$ as vector fields $X_k(x)$, then

$$\sum_{i} x_i q_{i,k}(s,\omega) \equiv 0$$

for $k = 1, 2, \dots n$, where

$$\sum_{i} x_i q_{i,k}(s,\omega) = \langle x, h(s,\omega) X_k(x(s)) \rangle$$

Now

$$\xi(s) = \langle x, h(s, \omega) X_k(x(s)) \rangle$$

is a semi-martingale and we can compute the Stratonovich differential

$$d \circ (h(s,\omega)X_k(x(s))) = [d \circ h(s,\omega)]X_k(x(s)) + h(s,\omega)[d \circ X_k(x(s))]$$
$$= \sum_r e_{k,r}(s,\omega) \circ d\beta_r(s) + e_{k,0}(s,\omega)ds$$

One can compute easily

$$e_{k,r}(s) = h(s)[-X_rX_k + X_kX_r](x(s)) = h(s)[X_k, X_r](x(s))$$

and

$$e_{k,0}(s,\omega) = h(s)[-X_0X_k + X_kX_0](x(s)) = h(s)[X_k, X_0](x(s))$$

One knows from the uniqueness in Doob-Meyer decomposition that if

$$d\xi = dM(t) + b(t)dt \equiv 0$$

then $M(t) \equiv 0$ and $b(t) \equiv 0$. Moreover if

$$dM(t) = \sum e_j(s)d\beta_j(s)$$

Therefore $e_{k,r}$ are equal to 0. The induction proceeds. By Blumenthal zero-one law if the determinant is zero for a positive time, then it is so with probability one and there is a deterministic direction in which it is degenerate. That direction is orthogonal to all the vectors generated by all the Lie brackets.

Quantitative version.

We will estimate $E[X^{-k}]$ by estimating $E[e^{-\lambda X}]$ and integrating

$$E[X^{-k}] = \frac{1}{\Gamma(k)} \int E[e^{-\lambda X}] \lambda^{k-1} d\lambda$$

We will fix M a bound on σ and b as well as the time interval [0,T]. C(T,M) will stand for a constant that may depend on M and T but independent of λ .

Lemma 1. Let $\xi(t)$ be a stochastic integral

$$\xi(t) = x + \int_0^t \sigma(s) \cdot d\beta(s) + \int_0^t b(s)ds$$

such that

$$|\sigma(s)| \le M$$
 and $|b(s)| \le M$

Then for any $\lambda \geq 0$,

$$E\left[\exp\left[-\frac{\lambda^2}{4}\int_0^t \xi^2(s)ds + \frac{\lambda}{4M}\int_0^t \sigma^2(s)ds\right]\right] \le C(t)$$

Proof. Consider the function

$$U(t,x) = \exp\left[-\frac{\lambda x^2}{4M}\tanh \lambda Mt + \frac{1}{4}F(\lambda Mt) + \frac{1}{2}t\right]$$

where

$$F(x) = \int_0^x [1 - \tanh x] dx = x - \log \cosh x \le \log 2$$

Then

$$U_{x} = U\left[-\frac{\lambda x}{2M} \tanh \lambda M t\right]$$

$$U_{xx} = U\left[\frac{\lambda^{2} x^{2}}{4M^{2}} \tanh^{2} \lambda M t - \frac{\lambda}{2M} \tanh \lambda M t\right]$$

$$U_{t} = U\left[-\frac{\lambda^{2} x^{2}}{4} \operatorname{sech}^{2} \lambda M t + \frac{\lambda M}{4} (1 - \tanh \lambda M t) + \frac{1}{2}\right]$$

$$\sup_{\substack{0 \le \sigma \le M \\ |b| \le M}} \left[\frac{\sigma^{2}}{2} U_{xx} + b U_{x} - \frac{\lambda^{2} x^{2}}{4} U + \frac{\lambda \sigma^{2}}{4M} U\right]$$

$$\leq U\left[\frac{\lambda^{2} x^{2}}{8} \tanh^{2} \lambda M t - \frac{\lambda^{2} x^{2}}{4} + \frac{\lambda M}{4} (1 - \tanh \lambda M t) + \frac{\lambda |x|}{2} \tanh \lambda M t\right]$$

$$\leq U\left[\frac{\lambda^{2} x^{2}}{4} \tanh^{2} \lambda M t - \frac{\lambda^{2} x^{2}}{4} + \frac{\lambda M}{4} (1 - \tanh \lambda M t) + \frac{1}{2}\right]$$

$$= U_{t}$$

Therefore

$$Z_t = U(T - t, \xi(t)) \exp\left[-\frac{\lambda^2}{4} \int_0^t \xi^2(s) ds + \frac{\lambda}{4M} \int_0^t \sigma^2(s) ds\right]$$

is a super martingale.

$$E[Z_T] \le E[Z_0]$$

Let $\xi(t)$ as before be

$$\xi(t) = x + \int_0^t \langle e(s).d\beta(s) \rangle + \int_0^t b(s)ds$$

and denote by

$$\eta(t) = x + \int_0^t \langle e(s) . d\beta(s) \rangle ds$$
$$B(t) = \int_0^t b(s) ds$$

so that

$$\xi(t) = x + \eta(t) + B(t)$$

Assume that

$$\sigma(s) = ||e(s)|| \le M$$
 a.e.

and

$$|b(s)| \le M$$
 a.e.

Lemma 2. We have

$$E\left[\exp\left[\lambda\int_0^T|\eta(s)|ds-\lambda^2\,T^2\int_0^T\sigma^2(s)ds\right]\right]\leq C.$$

Proof. Apply Doob's inequality to the non negative martingale

$$\exp\left[\lambda\,\eta(t) - \frac{\lambda^2}{2} \int_0^t \sigma^2(s) ds\right]$$

to get

$$P\left[\exp\left[\sup_{0 < t < T} [\lambda \eta(t) - \frac{\lambda^2}{2} \int_0^t \sigma^2(s) ds]\right] \ge \ell\right] \le \frac{1}{\ell}$$

and for $\lambda \geq 0$, replacing λ by 2λ ,

$$P\left[\exp\left[2\lambda\sup_{0\leq t\leq T}\eta(t)-2\,\lambda^2\int_0^T\sigma^2(s)ds\right]\right]\geq\ell\right]\leq\frac{1}{\ell}$$

This leads to

$$E\left[\exp\left[\lambda\sup_{0\leq t\leq T}|\eta(t)|-\lambda^2\int_0^T\sigma^2(s)ds\right]\right]\leq C$$

and

$$E\left[\exp\left[\frac{\lambda}{T}\int_0^T |\eta(s)|ds - \lambda^2 \int_0^T \sigma^2(s)ds\right]\right] \le C$$

and replacing λ by λT ,

$$E\left[\exp\left[\lambda \int_0^T |\eta(s)|ds - \lambda^2 T^2 \int_0^T \sigma^2(s)ds\right]\right] \le C$$

Lemma 3. For any $\lambda \geq 0$,

$$E\left[\exp\left[-4M\lambda^2T^2\int_0^T\xi^2(s)ds - \frac{\lambda}{2}\int_0^T|\xi(s)|ds + \frac{\lambda^2T^2}{2}\int_0^T\sigma^2(s)ds + \frac{\lambda}{2}\int_0^T|B(s)|ds\right]\right] \le C(T)$$

Proof: We have by the earlier lemma, for any $\mu > 0$

$$E\left[\exp\left[-\frac{\mu^2}{4}\int_0^T \xi^2(s)ds + \frac{\mu}{4M}\int_0^T \sigma^2(s)ds\right]\right] \le C(T)$$

By Schwarz's inequality, in combination with Lemma 2, with the choice of $\mu = 4M\lambda^2 T^2$

$$E\left[\exp\left[-4M\lambda^2T^2\int_0^T\xi^2(s)ds + \frac{\lambda^2T^2}{2}\int_0^T\sigma^2(s)ds + \frac{\lambda}{2}\int_0^T|\eta(s)|ds\right]\right] \le C(T)$$

This in turn implies

$$E\left[\exp\left[-4M\lambda^2T^2\int_0^T\xi^2(s)ds - \frac{\lambda}{2}\int_0^T|\xi(s)|ds + \frac{\lambda^2T^2}{2}\int_0^T\sigma^2(s)ds + \frac{\lambda}{2}\int_0^T|B(s)|ds\right]\right] \le C(T)$$

If X and Y are two random variables such that

$$E\left[\exp[-aX + bY]\right] \le C$$

then

$$E\left[\exp[-\frac{a}{2}X]\right] = E\left[\exp[-\frac{a}{2}X + \frac{b}{2}Y - \frac{b}{2}Y]\right] \leq \sqrt{C}\left[E\left[\exp[-bY]\right]\right]^{\frac{1}{2}}$$

Therefore

$$E\left[\exp\left[-2M\lambda^{2}T^{2}\int_{0}^{T}\xi^{2}(s)ds - \frac{\lambda}{4}\int_{0}^{T}|\xi(s)|ds\right]\right]$$

$$\leq C(T)E\left[\exp\left[-\int_{0}^{T}\frac{\lambda^{2}T^{2}}{2}\sigma^{2}(s)ds - \frac{\lambda}{2}\int_{0}^{T}|B(s)|ds\right]\right]^{\frac{1}{2}}$$

$$2M\lambda^{2}T^{2}\int_{0}^{T}\xi^{2}(s)ds + \frac{\lambda}{4}\int_{0}^{T}|\xi(s)|ds$$

$$\leq 2M\lambda^{2}T^{2}\int_{0}^{T}\xi^{2}(s)ds + \frac{\lambda\sqrt{T}}{4}\left[\int_{0}^{T}\xi^{2}(s)ds\right]^{\frac{1}{2}}$$

$$\leq 2M\lambda^{2}T^{2}\int_{0}^{T}\xi^{2}(s)ds + 2\lambda^{2}T\int_{0}^{T}\xi^{2}(s)ds + \frac{1}{32}$$

$$\leq 2\lambda^{2}T(1+MT)\int_{0}^{T}\xi^{2}(s)ds + \frac{1}{32}$$

Therefore

$$\begin{split} E\bigg[\exp\big[-2\lambda^2T(1+MT)\int_0^T\xi^2(s)ds\big]\bigg] \\ &\leq C(T)E\bigg[\exp\big[-\frac{\lambda^2T^2}{2}\int_0^T\sigma^2(s)ds-\frac{\lambda}{2}\int_0^T|B(s)|ds\big]\bigg]^{\frac{1}{2}} \\ &\leq C(T)E\bigg[\exp\big[-\frac{\lambda^2T^2}{2}\int_0^T\sigma^2(s)ds\big]\bigg]^{\frac{1}{2}} \end{split}$$

and

$$\begin{split} E \left[\exp\left[-2\lambda^2 T (1+MT) \int_0^T \xi^2(s) ds \right] \right] \\ & \leq C(T) E \left[\exp\left[-\frac{\lambda}{2} \int_0^T |B(s)| ds \right] \right]^{\frac{1}{2}} \\ \int_0^\infty e^{-Ax^2} x^k dx &= \frac{1}{2} \int_0^\infty e^{-Ay} y^{\frac{k-1}{2}} dy = \frac{\Gamma(\frac{k+1}{2})}{2} A^{-\frac{k+1}{2}} \\ \int_0^\infty \sqrt{(u(x))} \, x^k dx &\leq \int_0^1 \sqrt{(u(x))} \, x^k dx + \int_1^\infty \sqrt{(u(x))} \, x^k dx \\ &\leq \left[\int_0^1 u(x) \, x^{2k} dx \right]^{\frac{1}{2}} + \left[\int_1^\infty \frac{dx}{x^2} \right]^{\frac{1}{2}} \left[\int_1^\infty u(x) x^{2k+2} dx \right]^{\frac{1}{2}} \\ &= \left[\int_0^\infty u(x) \, x^{2k} dx \right]^{\frac{1}{2}} + \left[\int_0^\infty u(x) \, x^{2k+2} dx \right]^{\frac{1}{2}} \end{split}$$

Therefore

$$E\left[\left[\int_{0}^{T} \xi^{2}(s)ds\right]^{-\frac{k+1}{2}}\right] \leq C(T,k)E\left[1 + \left[\int_{0}^{T} \sigma^{2}(s)ds\right]^{-\frac{2k+3}{2}}\right]^{\frac{1}{2}}$$

and

$$E\left[\left[\int_{0}^{T} \xi^{2}(s)ds\right]^{-\frac{k+1}{2}}\right] \le C(T,k)E\left[1 + \left[\int_{0}^{T} |B(s)|ds\right]^{-(2k+3)}\right]^{\frac{1}{2}}$$

The final step is to estimate

$$E\left[\left[\int_0^T|B(s)|ds\right]^{-2k}\right]$$

in terms of

$$E\left[\left[\int_0^T |b(s)|^2 ds\right]^{-k}\right]$$

where

$$B(t) = x + \int_0^t b(s)ds$$

Should depend on the simple estimate (Sobolev)

$$||b||_{L_2[0,T]} \le C_T (||B||_{L_1[0,T]})^a (||b||_{H^p_\alpha[0,T]})^{1-a}$$

First if we consider

$$\Theta^{2} = \int_{0}^{T} \int_{0}^{T} \frac{|b(t) - b(s)|^{2}}{|t - s|^{\frac{7}{4}}} dt ds$$

then

$$\Theta = \|b\|_{H^p_\alpha[0,T]}$$

with p = 2 and $\alpha = \frac{3}{8}$.

$$E[\Theta^k] \le C(T, k)$$

and one can get

$$||b||_{L_2[0,T]} \le C_T \Theta^{1-a} (||B||_{L_1[0,T]})^a$$

for some a > 0.