
Chapter 3

Stochastic Differential

Equations.

3.1 Existence and Uniqueness.

One of the ways of constructing a Diffusion process is to solve the stochastic
differential equation

dx(t) = σ(t, x(t)) · dβ(t) + b(t, x(t))dt ; x(0) = x0 (3.1)

where x0 ∈ Rd is either nonrandom or measurable with respect to F0. This is
of course written as a stochastic integral equation

x(t) = x(0) +

∫ t

0
σ(s, x(s)) · dβ(s) +

∫ t

0
b(s, x(s))ds (3.2)

If σ(s, x) and b(s, x) satisfy the following conditions

|σ(s, x)| ≤ C(1 + |x|) ; |b(s, x)| ≤ C(1 + |x|) (3.3)

|σ(s, x) − σ(s, y)| ≤ C|x − y| ; |b(s, x) − b(s, y)| ≤ C|x − y| (3.4)

by a Picard type iteration scheme one can prove existence and uniqueness.

Theorem 3.1. Given σ, b that satisfy (3.3) and (3.4), for given x0 which is
F0 measurable, there is a unique solution x(t) of (3.2), with in the class of
progressively measurable almost surely continuous solutions.

Proof. Define iteratively

x0(t) ≡ x0

xn(t) = x0 +

∫ t

0
σ(s, xn−1(s)) · dβ(s) +

∫ t

0
b(s, xn−1(s))ds (3.5)

31



32 CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS.

If we denote the difference xn(t) − xn−1(t) by zn(t), then

zn+1(t) =

∫ t

0
[σ(s, xn(s)) − σ(s, xn−1(s))] · dβ(s)

+

∫ t

0
[b(s, xn(s)) − b(s, xn−1(s))]ds

If we limit ourselves to a finite interval 0 ≤ t ≤ T , then

E
[∣∣

∫ t

0
[σ(s, xn(s)) − σ(s, xn−1(s))] · dβ(s)

∣∣2] ≤ CE
[ ∫ t

0
|zn(s)|2ds

]

and

E
[∣∣

∫ t

0
[b(s, xn(s)) − b(s, xn−1(s))]ds

∣∣2] ≤ CTE
[ ∫ t

0
|zn(s)|2ds

]

Therefore

E
[
|zn+1(t)|2

]
≤ CT E

[ ∫ t

0
|zn(s)|2ds

]

With the help of Doob’s inequality one can get

∆n+1(t) = E
[

sup
0≤s≤t

|zn+1(s)|2
]
≤ CT E

[ ∫ t

0
|zn(t)|2dt

]
≤ CT

∫ t

0
∆n(s)ds

By induction this yields

∆n(t) ≤ A
Cn

T tn

n!

which is sufficient to prove the existence of an almost sure uniform limit x(t) of
xn(t) on bounded intervals [0, T ]. The limit x(t) is clearly a solution of (3.2).
Uniqueness is essentially the same proof. For the difference z(t) of two solutions
one quickly establishes

E
[
|z(t)|2

]
≤ CT E

[ ∫ t

0
|z(s)|2ds

]

which suffices to prove that z(t) = 0.

Once we have uniqueness one should thing of x(t) as a map of x0 and the
Brownian increments dβ in the interval [0, t]. In particular x(t) is a map of x(s)
and the Brownian increments over the interval [s, t]. Since x(s) is Fs measurable,
we can conclude that x(t) is a Markov process with transition probability

p(s, x, t, A) = P [x(t; s, x) ∈ A]

where x(t; s, x) is the solution of (3.2) for t ≥ s, initialised to start with x(s) = x.
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It is easy to see, by an application of Itô’s lemma that

M(t) =u(t, x(t)) − u(s, x(s)) −
∫ t

s

[∂u

∂s
(s, x(s))

+
1

2

∑

i,j

ai,j(s, x(s))
∂2u

∂xi∂xj
(s, x(s)) +

∑

i

bi(s, x(s))
∂u

∂xi
(s, x(s))

]
ds

is a martingale, where a = σσ∗, i.e.

ai,j(s, x) =
∑

k

σi,k(s, x)σk,j(s, x)

The process x(t) is then clearly the Diffusion process associated with

Ls =
1

2

∑

i,j

ai,j(s, x)
∂2

∂xi∂xj
+

∑

i

bi(s, x)
∂

∂xi

3.2 Smooth dependence on parameters.

If σ and b depend smoothly on an additional parameter θ then we will show
that the solution x(t) = x(t, θ) will depend smoothly on the parameter. The
idea is to start with the solution

x(t, θ) = x0(θ) +

∫ t

0
σ(s, x(s, θ), θ) · dβ(s) +

∫ t

0
b(s, x(s, θ), θ)ds

Differentiating with respect to θ, and denoting by Y the derivative, we get

Y (t, θ) = y0(θ) +

∫ t

0

[
σx(s, x(s, θ), θ)Y (s, θ) + σθ(s, x(s, θ), θ)

]
· dβ(s)

+

∫ t

0

[
bx(s, x(s, θ), θ)Y (s, θ) + bθ(s, x(s, θ), θ)

]
ds

We look at (x, Y ) as an enlarged system satisfying

dx =σ · dβ + bdt

dY =[σxY + σθ] · dβ + [bxY + bθ]dt

The solution Y can easily be shown to be the derivative Dθx(t, θ). This proce-
dure can be repeated for higher derivatives. We therefore arrive at the following
Theorem.

Theorem 3.2. Let σ, b depend on θ in such a way that all derivatives of σ and
b with respect to θ of order at most k, exist and are uniformly bounded. Then
the random variables x(t, θ) have derivatives with respect to θ up to order k and
we can get moment estimates of all orders for these derivatives.
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Proof. We can go through the iteration scheme in such manner that the ap-
proximations Yn are the derivatives of xn. Therefore the limit Y has to be
the derivative of x. The moment estimates on the other hand depend only on
general results, stated in Lemma 3.3 below, concerning solutions of stochas-
tic differential equations. Successive differentiations produces for the highest
derivative Z = Zk of order k a linear equation of the form

dZ(t) = σk(t, ω))Z(t)dβ(t) + bk(t, ω)Z(t)dt + ck(t, ω)dβ(t) + ek(t, ω)dt (3.6)

where σk and bk involve derivatives of σ(t, x) and b(t, x) with respect x and
are uniformly bounded progressively measurable functions. ck, dk on the other
hand are polynomials in lower order derivatives with progressively measurable
bounded coefficients. One gets estimates on the moments of Z = Zk by induc-
tion on k.

Lemma 3.3. Let σk, bk be uniformly bounded

sup
ω,0≤t≤T

[‖σk(t, ω))‖ + ‖bk(t, ω)‖] ≤ C(T ) < ∞

and ck, ek satisfy moment estimates of the form

sup
0≤t≤T

E
[
‖ck(t, ω)‖r + ‖ek(t, ω)‖r

]
≤ Cr(T ) < ∞

Then the solution Z(t) of (3.6) has finite moments of all orders and

sup
0≤s≤T

E
[
‖Z(s)‖r

]
≤ C̃r(T ) < ∞

Proof. We consider ur(x) = (1 + ‖x‖2)
r
2 and use Itô’s formula. We apply

Hölder’s inequality to separate the terms with both Z and ck or ek.

E
[
ur(Z(t))

]
≤ E

[
ur(Z(0))

]
+ Ar

∫ t

0
E

[
ur(Z(s))

]
ds +

∫ t

0
Br(s)ds

which is sufficient to provide the estimates. Again Doob’s inequality makes it
possible to take the supremum inside the expectation with out any trouble.

Corollary 3.4. If x(t) is viewed as a function of the starting point x, then one
can view x as the parameter and conclude that if the coefficients have bounded
derivatives of all orders then the solution x(t) is almost surely an infinitely
differentiable function of its starting point.

Remark 3.1. Since smoothness is a local property, if σ and b have at most
linear growth, the solution exists for all time with out explosion, and then one
can modify the coefficients outside a bounded domain with out changing much.
This implies that with out uniform bounds on derivatives the solutions x(t) will
still depend smoothly on the initial point, but the derivatives may not have
moment estimates.

Remark 3.2. This means one can view the solution u(t, x) of the equation

du(t, x) = σ(u(t, x)) · dβ + b(u(t, x))dt; u(0, x) = x

as random flow u(t) : Rd → Rd. The flow as we saw is almost surely smooth.
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3.3 Itô and Stratonovich Integrals.

In the definition of the stochastic integral

η(t) =

∫ t

0
f(s)dx(s)

we approximated it by sums of the form
∑

j

f(tj−1)[x(tj) − x(tj−1)]

always sticking the increments in the future. This allowed the integrands to be
more or less arbitrary, so long as it was measurable with respect to the past.
This meshed well with the theory of martingales and made estimation easier.
Another alternative, symmetric with respect to past and future, is to use the
approximation

∑

j

[f(tj−1) + f(tj)]

2
[x(tj) − x(tj−1)]

It is not clear when this limit exists. When it exists it is called the Stratonovich
integral and is denoted by

∫
f(s)◦dx(s). If f(s) = f(s, x(s)), then the difference

between the two integrals can be explicitly calculated.
∫ t

0
f(s, x(s)) ◦ dx(s) =

∫ t

0
f(s, x(s)) · dx(s) +

1

2

∫ t

0
a(s)ds

where
∫ t

0
a(s)ds = lim

∑

j

[f(tj , x(tj)) − f(tj−1, x(tj−1))][x(tj) − x(tj−1)]

If x(t) is just Brownian motion in Rd, then a(s) = (∇·f)(s, x(s)). More generally
if

lim
∑

j

[xi(tj) − xi(tj−1)][xk(tj) − xk(tj−1)] =

∫ t

0
ai,k(s)ds

then
a(s) =

∑

i,k

fi,k(s, x(s))ai,k(s) = Tr[(Df)(s, x(s))a(s)]

Solutions of
dx(t) = σ(t, x(t)) · dβ(t) + b(t, x(t))dt

can be recast as solutions of

dx(t) = σ(t, x(t)) ◦ dβ(t) + b̃(t, x(t))dt

with b and b̃ related by

bi(t, x) = b̃i(t, x) +
1

2

∑
σj,k(t, x)

∂

∂xj
σi,k(t, x)
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To see the relevance of this, one can try to solve

dx(t) = σ(t, x(t)) · dβj(t) + b(t, x(t))dt

by approximating β(t) by a piecewise linear approximation β(n)(t) with deriva-
tive f (n)(t). Then we will have just ODE’s

dx(n)(t)

dt
= σ(t, x(n)(t))f (n)(t) + b(t, x(n)(t))

where f (n)(·) are piecewise constant. An elementary calculation shows that over
an interval of constancy [t, t + h],

x
(n)
i (t + h) = x

(n)
i (t) + σ(t, x(n)(t)) · Zh + bi(t, x

(n)(t))h

+
1

2
< Zh, ci(t, x

(n)(t))Zh > +o((Zh)2)

where

ci(t, x) =
∑

σj,k(t, x)
∂

∂xj
σi,k(t, x)

and Zh is a Gaussian with mean 0 and variance hI while

β(n)(t + h) = βn(t) + Zh

It is not hard to see that the limit of x(n)(·) exists and the limit solves

dx(t) = σ(t, x(t)) · dβ(t) + b(t, x(t))dt +
1

2
c(t, x(t))dt

or
dx(t) = σ(t, x(t)) ◦ dβ(t) + b(t, x(t))dt

It is convenient to consider a vector field

X =
∑

i

σi(x)
∂

∂xj

and its square

X2 =
∑

i,j

σi(x)σj(x)
∂2

∂xi∂xj
+

∑

j

cj(x)
∂

∂xj

where

cj(x) =
∑

i

σi(x)
∂σj(x)

∂xi

Then the solution of

dx(t) = σ(t, x(t)) ◦ dβ(t) + b(t, x(t))dt =
∑

Xi(t, x(t)) ◦ dβi(t) + Y (t, x(t))dt
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is a Diffusion with generator

Lt =
1

2

∑
Xi(t)

2 + Y (t)

When we change variables the vector fields change like ordinary first order cal-
culus and

L̂t =
1

2

∑
X̂i(t)

2 + Ŷ (t)

and the Stratonovich solution

dx(t) = σ(t, x(t)) ◦ dβ(t) + b(t, x(t))dt

transforms like

dF (x(t)) = DF · dx(t) = (DF )(x(t))[σ(t, x(t)) ◦ dβ(t) + b(t, x(t))dt]

The Itô corrections are made up by the difference between the two integrals.

Remark 3.3. Following up on remark (3.1), for each t > 0, the solution actually
maps Rd → Rd as a diffeomorphism. To see this it is best to view this through
Stratonovich equations. Take t = 1. If the forward flow is therough vector fileds
Xi(t), Y (t), the reverse flow is through −Xi(1−t), Y (1−t) and the reversed noise
is β̂(t) = β(1) − β(1 − t). One can see by the piecewise linear approximations
that these are actually inverses of each other.

Remark 3.4. One can perhaps consider more general solutions to the stochastic
differential equation. On some (Ω,Ft, P ), one can try to define x(t) and β(t),
both progressively measurable, that satisfy the relation

x(t) = x(0) +

∫ t

0
σ(s, x(s)) · dβ(s) +

∫ t

0
b(s, x(s))ds

x(t, ω) may not be measurable with respect to Gt the sub σ-field generated by
β(·). It is not hard to show, assuming Lipshhitz conditions on σ and b, that
the Picard iteration scheme produces a solution of the above equation which is
a progressively measurable function of x(0) and the Brownian increments and
any other solution is equal to it.


