
For any noise if the viscosity is large enough there is a unique invariant measure. Let
the equation be

du(t, x) = γ∆u − P (u · D)u + dW (t, x)

u(0, x) = u0(x)

If we take two solution u(t), v(t) with different initial data, then the difference w(t) =
u(t) − v(t) satisfies

dw(t)

dt
= γ∆w(t) − B(u(t), u(t)) + B(v(t), v(t))

= γ∆w(t) − B(v(t) + w(t), v(t) + w(t)) + B(v(t), v(t))

= γ∆w(t) − B(v(t), w(t))− B(w(t), v(t))− B(w(t), w(t))

and

d

dt

1

2
‖w(t)‖2 =< ẇ(t), w(t) >

=< γ∆w(t) − B(v(t), w(t))− B(w(t), v(t))− B(w(t), w(t)), w(t) >

=< γ∆w(t) − B(w(t), v(t)), w(t) >

=< γ∆w(t) + B(w(t), w(t)), v(t) >

Therefore

d

dt

1

2
‖w(t)‖2 + γ‖w(t)‖2

1 ≤ C‖w(t)‖1‖w(t)‖‖v(t)‖1

≤
γ

2
‖w(t)‖2

1 +
2C

γ
‖w(t)‖2‖v(t)‖2

1

Using Poincaré inequality
‖w‖2

1 ≥ c‖w‖2

we conclude that

‖w(t)‖2 ≤ ‖w(0)‖2 exp
[ ∫ t

0

[
2C

γ
‖v(s)‖2

1 −
cγ

2
]ds

]

In order to prove that ‖w(t)‖ goes to 0 as t → ∞ it is enough to show that for any starting
point u0, a.e w.r.t Pu0

,

lim inf
t→∞

∫ t

0

[
2C

γ
‖v(s)‖2

1 −
cγ

2
]ds > +∞

If f(u) = 1
2

∫
D
|u(x)|2dx then

df(u) = −γ‖u‖2
1dt + kdt+ < u, dW >
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with k given by

kt = E[

∫

D

|W (t, x)|2dx]

and

d[f(u)]p = p[f(u)]p−1df(u) +
p(p − 1)

2
[f(u)]p−2(df(u))2

In particular

d

dt
E

[
[f(u(t))]p

]
≤ E

[
− γ‖u(t)‖2

1cp[f(u(t))]p−1 + Cp[f(u(t))]p−1

]

Using Poincaré inequality

d

dt
E

[
[f(u(t))]p

]
≤ E

[
− cγ[f(u(t))]p + Cp[f(u(t))]p−1

]

It is easy to show by induction on p, that

sup
t

E[[f(u(t))]p] ≤ Cp(‖u0‖)

We know that

ξ(t) = ‖u(t)‖2 − ‖u(0)‖2 + 2γ

∫ t

0

‖u(s)‖2
1ds − kt

is a martingale with quadratic variation

(dξ(t))2 =

[ ∫

D

∫

D

< ρ(x, y)u(t, x), u(t, y) > dxdy

]
dt

Here ρ(x, y) is the covariance of dW (t, x)dW (t, y) = ρ(x, y)dt. It is not hard to argue from
here that for any initial u0 in L2(D) almost surely with respect to the process Pu0

starting
from u0 we have

lim
t→∞

ξ(t)

t
= 0

By Poincaré inequality this is like the diffusion

1

2
xD2 − γxD

and x(t)
t

→ 0 a.e. as t → ∞. Then

lim
t→∞

[
1

t

∫ t

0

‖u(s)‖2
1ds] =

k

2γ

Enough if
Ck

γ2
<

cγ

2
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For the next step it is convenient to write the equation in terms of vorticity defined
by a scalar

w(x) = Dyu − Dxv

In Fourier modes
wk = ik2uk − ik1vk

Divergence free condition is
ik1uk + ik2vk = 0

providing a solution for (u, v), from w

uk = −
ik2

|k|2
wk, vk =

ik1

|k|2
wk

We will write the N-S equations for wk.

ẇk = −γ|k|2wk −
1

4π

∑

j+ℓ=k

(j2ℓ1 − j1ℓ2)
[ 1

|ℓ|2
−

1

|j|2
]
wjwℓ

The randomly forced version will be

dwk(t) =

[
− γ|k|2wk −

1

4π

∑

j+ℓ=k

(j2ℓ1 − j1ℓ2)
[ 1

|ℓ|2
−

1

|j|2
]
wjwℓ

]
dt + dzk(t)

where zk = z̄k. ∑
ei<k,x>zk(t) =

∑
fk(x)βk(t)

with fk being cos < k, x > or sin < k, x > depending on whether k ∈ Z+ or Z−. In other
words

zk(t) = βk(t) + iβ−k(t) for k ∈ Z+

and
zk(t) = β−k(t) − iβk(t) for k ∈ Z−

The goal is to still be able to prove the uniqueness of the invariant measure even if the
viscosity is small and the noise is ”on” only at a finite number of frequencies.

The new idea is to replace the strong Feller property by an ”approximate” strong feller
property. A some what strengthened version of the strong Feller property asserts that for
any t > 0,

x → p(t, x, ·)

is a continuous map in variation. The almost strong Feller property is a weakening of this.
We need the notion of the following metric on probability measures on a metric space.

D(α, β) = sup
φ(·)∈L1

|

∫
φ(x)[dα − dβ]|
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where L1 = {φ : |φ(x) − φ(y)| ≤ d(x, y)}. When d(x, y) is the discrete metric with
d(x, y) = 1 if x 6= y, D becomes the variational distance. It is not hard to see that if
dn ↑ d, then Dn ↑ D as well.

We shall say that the transition probability Pt on a metric space is (X, ρ) is approxi-
mately strongly Feller at x if, there exists dn ↑ d where d is the discrete metric and times
tn ↑ ∞, such that

lim
ǫ→0

lim
n→∞

sup
y:ρ(x,y)≤ǫ

Dn(P (tn, x, ·), P (tn, y, ·)) = 0

Note that ρ has nothing to do with dn, d. Suppose x ∈ X is such that for any neighborhood
U of x and any z ∈ X , P (s, z, U) > 0 for some s and P (·, ·, ·) is approximately Feller at
x, then the invariant measure ν is unique. Let if possible ν1, ν2 be two different invariant
measures. We can assume they are orthogonal. Let φ(x) be a function which is 0 and 1 on
the disjoint supports, so that

∫
φ(x)dν1 = 1−

∫
φ(x)dν2 = 0. Clearly for any neighborhood

U of x, νi(U) > 0 for i = 1, 2 and

inf
x∈U

∫
φ(y)P (t, x, dy) = 1 − sup

x∈U

∫
φ(y)P (t, x, dy) = 0

which in turn implies that

sup
x,y∈U

Dn(P (tn, x, ·), P (tn, y, ·)) = 1

contradicting the approximate strong Feller property. We saw that strong Feller property
at time t is a consequence of a gradient estimate of the form

‖(∇Ptφ)(x)‖ ≤ C(‖x‖)‖φ‖∞

The approximate strong Feller property will follow from

‖(∇Ptφ)(x)‖ ≤ C(‖x‖)[‖φ‖∞ + δ(t)‖∇φ‖∞]

with δ(t) → 0 as t → ∞.

The idea is to let the noise take care of small frequencies and the contraction the high
frequencies. We have the equation

dw(t) = γ∆w(t) + B̃(w(t), w(t)) + dW (t)

The linearized equation for ξ(t) = Dξw(t) is

dξ(t) = γ∆ξ(t) + B̂(w(t), ξ(t)); ξ(0) = ξ

Then
(DξPtφ)(w) = Ew[< (∇φ)(w(t)), ξ(t) >]
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We have the integration by parts formula

Ew[< (∇φ)(w(t)), ξ(t) >] = Ew[φ(w(t))

∫ t

0

v(s)dW (s)]

Let us choose a perturbation v(t) adapted to W (t) and perturb infinitesimally

dw(t) = [γ∆w(t) + B̃(w(t), w(t))]dt + dW (t) + hv(t)dt

Denoting the derivative by Dv, we have the integration by parts formula

Dvφ(w(t)) =< ∇φ, η(t) >

and by Girsanov formula

Ew[Dvφ(w(t))] = Ew[φ(w(t))

∫ t

0

S−1v(s)dW (s)]

and η(t) is the solution of

dη(t) = [γ∆η(t) + B̂(w(t), η(t)) + v(t)]dt; η(0) = 0

Getting a gradient estimate requires matching η(t) = ξ(t) at some time t. That would lead
to

(DξPtφ)(w) = Ew[φ(w(t))

∫ t

0

S−1v(s)dW (s)]

which is amenable to an estimate involving ‖φ‖∞. This requires invertiblility of the co-
variance operator S. If we have only noise of strength θ in low frequencies upto |k| ≤ ℓ,
then we need to do some thing. If we do not match η(t) and ξ(t) perhaps there is an error
ζ(t) = ξ(t) − η(t). Then

(DξPtφ)(w) = Ew[φ(w(t))

∫ t

0

S−1v(s)ds] + Ew[(∇φ)(w(t))ζ(t)]

If we can keep Ew|
∫ t

0
S−1v(s)ds| bounded and Ew[|ζ(t)|] → 0 as t → ∞ we are in business.

We rewrite the equation

dξ(t) = [γ∆ξ(t) + B̂(w(t), ξ(t))]dt; ξ(0) = ξ

in two pieces. The projections ξL(t) and ξH(t) into frequencies |k| ≤ ℓ and |k| > ℓ. We
denote by πL and πH the corresponding projections.

dξL(t) = [γ∆ξL(t) + πLB̂(w(t), ξ(t))]dt

dξH(t) = [γ∆ξH(t) + πHB̂(w(t), ξ(t))]dt

ξL(0) = ξL

ξH(0) = ξH

5



Let us pick

v(s) =
ζL(s)

‖ζL(s)‖
+ [γ∆ζL(t) + πLB̂(w(t), ζ(t))]

where ζ(s) = ξ(s) − η(s) and

dη(t) = [γ∆η(t) + B̂(w(t), η(t)) + v(t)]dt; η(0) = 0

Note that v(s) is in the range of S. We check the following:

dζL(t) = dξL(t) − dηL(t)

= [γ∆ξL(t) + πLB̂(w(t), ξ(t))]dt− [γ∆ηL(t) + πLB̂(w(t), η(t))]dt− v(t)dt

= [γ∆ζL(t) + πLB̂(w(t), ζ(t))]dt− v(t)dt

= −
ζL(s)

‖ζL(s)‖
dt

Since ζL(0) ≤ ‖ξ‖ ≤ 1 we have ζL(t) = 0 if t ≥ 1. In addition we have for t ≥ 1,

dζH(t) = [γ∆ζH(t) + πHB̂(w(t), ζH(t))]dt

Now ∆ has a decay rate of γN2.
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