For any noise if the viscosity is large enough there is a unique invariant measure. Let
the equation be
du(t,x) = yAu — P(u - D)u + dW (t, x)

u(0, ) = ug(x)

If we take two solution wu(t),v(t) with different initial data, then the difference w(t) =
u(t) — v(t) satisfies

and
& lw(o)[ =< (1), w(r) >
=< 7Aw(t) — B(v(t), w(t)) — B(w(t),v(t)) — B(w(t), w(t)), w(t) >
=< yAw(t) — B(w(t),v(t)),w(t) >
=< yAw(t) + B(w(t), w(t)),v(t) >
Therefore
il” O + A w®)]F < Cllw®) [ |w@) 0@l
et Yw@®)||7 < Cllw(®)]1||w v(t) |1
< 21} + 22 o) 2o o)1}

Using Poincaré inequality
lwllf > ¢f|w|®

we conclude that

o)1 < o) Fex [ [ Eo(s) 1 = Flas]

In order to prove that ||w(t)|| goes to 0 as t — oo it is enough to show that for any starting
point ug, a.e w.r.t Py,

t
hminf/ [EHU(S)H% - %]ds > 400
0

t—o0 Y
If f(u) = 3 [ [u(z)]*dz then
df (u) = —||ul/3dt + kdt+ < u,dW >
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with k£ given by
kt = E[/ W (t, )|*dx]
D

and

alf )? = plF ) ) + P8 -2 ()

In particular
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Using Poincaré inequality

GEIF O] < B| - el + Glruo ]

It is easy to show by induction on p, that
sup E{[f (u(®))I"] < Cp(Jluoll)

We know that .
(1) = lu@®)|]®* — lu(0)]* + 27/0 [u(s)|3ds — kt

is a martingale with quadratic variation

@07 = | [ [ <otamute.a),utt) > doiya

Here p(z,y) is the covariance of dW (t, x)dW (t,y) = p(x,y)dt. It is not hard to argue from
here that for any initial ug in L2 (D) almost surely with respect to the process P, starting
from ug we have
t
lim @ =0

t—oo t

By Poincaré inequality this is like the diffusion
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and @ — 0 a.e. as t — co. Then
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For the next step it is convenient to write the equation in terms of vorticity defined
by a scalar
w(x) = Dyu — Dyv

In Fourier modes
W = ikguk — ikl’Uk

Divergence free condition is
tkiug + ikovi = 0

providing a solution for (u,v), from w

1ko ikq
Ug = —W’wk,vk = ka

We will write the N-S equations for wy.

. 1 ) . 1 1
Wy = —’y‘]{j|2wk — 4— Z (]261 — 3162) [ﬁ — —Q]w]wg
. 2 2% " Tjl

The randomly forced version will be

1 1
— — —=|wjwg | dt + dzi,(2)

1 : :
dwk(t> = [_ ’7|k|2wk - Z (]2€1 _]1£2>[|€|2 |]|2

47
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where 2z, = Z.
YT a(t) =) ful@)But)

with fi being cos < k,x > or sin < k,z > depending on whether k € Z* or Z~. In other
words
Zk(t) = ﬁk(t> + Zﬂ_k(t) for ke Z+

and
Zk(t) = ﬂ_k(t) — Zﬂk(t) for ke Z~

The goal is to still be able to prove the uniqueness of the invariant measure even if the
viscosity is small and the noise is "on” only at a finite number of frequencies.

The new idea is to replace the strong Feller property by an ”approximate” strong feller
property. A some what strengthened version of the strong Feller property asserts that for
any t > 0,

r—p (t7 €L, )

is a continuous map in variation. The almost strong Feller property is a weakening of this.
We need the notion of the following metric on probability measures on a metric space.

D)= sw | [ o)lda—ds]
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where £1 = {¢ : |¢(x) — ¢(y)| < d(x,y)}. When d(z,y) is the discrete metric with
d(z,y) = 1 if x # y, D becomes the variational distance. It is not hard to see that if
dp T d, then D, T D as well.

We shall say that the transition probability P, on a metric space is (X, p) is approxi-
mately strongly Feller at z if, there exists d,, T d where d is the discrete metric and times
t, T oo, such that

lim lim sup D, (P(tn,z,-),P(tn,y,-)) =0

€=0n=00 4 h(z,y)<e

Note that p has nothing to do with d,,, d. Suppose x € X is such that for any neighborhood
U of x and any z € X, P(s,z,U) > 0 for some s and P(-,-,-) is approximately Feller at
x, then the invariant measure v is unique. Let if possible v, 15 be two different invariant
measures. We can assume they are orthogonal. Let ¢(x) be a function which is 0 and 1 on
the disjoint supports, so that [ ¢(z)dvy = 1— [ ¢(z)dry = 0. Clearly for any neighborhood
Uofz, v;(U)>0fori=1,2 and

inf/qb(y) t:)sdy—l—sup/qb P(t,z,dy) =0

zeU zelU
which in turn implies that

sup Dy, (P(ty,z,-), P(tn,y,")) =1
z,yclU

contradicting the approximate strong Feller property. We saw that strong Feller property
at time ¢ is a consequence of a gradient estimate of the form

I(VE) (@) < Cl[z[D]|lloo

The approximate strong Feller property will follow from

I(VP:) ()| < CllzD[#llcc + 3BVl

with 0(t) — 0 as t — oo.

The idea is to let the noise take care of small frequencies and the contraction the high
frequencies. We have the equation

dw(t) = yAw(t) + B(w(t), w(t)) + dW (t)
The linearized equation for £(t) = Dew(t) is

de(t) = YAE(t) + B(w(t), £(t)); £(0) = ¢

Then
(DePrg)(w) = Eu[< (Vo) (w(t)),£(t) >]



We have the integration by parts formula

Ey[< (Vo)(w(t)),£(t) >] = Ew[cb(w(t))/o v(s)dW (s)]

Let us choose a perturbation v(¢) adapted to W (t) and perturb infinitesimally
dw(t) = [yAw(t) + B(w(t), w(t))]dt + dW (t) + hv(t)dt
Denoting the derivative by DV, we have the integration by parts formula

D ¢(w(t)) =< Vo, n(t) >

and by Girsanov formula

Eu[D¢(w(t))] = Ew[¢(U)(t))/0 S u(s)dW (s)]
and 7)(t) is the solution of

dn(t) = [yAn(t) + B(w(t), n(t)) + v(t)]dt; n(0) = 0

Getting a gradient estimate requires matching n(t) = £(t) at some time ¢. That would lead
to
t
(DePro)(w) = Ew[cb(w(t))/ S~ o(s)dW (s)]
0

which is amenable to an estimate involving ||¢||o. This requires invertiblility of the co-
variance operator S. If we have only noise of strength 6 in low frequencies upto |k| < ¢,
then we need to do some thing. If we do not match 7(t) and £(t) perhaps there is an error

¢(t) = &(t) = n(t). Then
(DePrg)(w) = Ew[¢(w(t))/0 S™h(s)ds] + Eu[(Ve) (w(t))( ()]

If we can keep E,,| fg S~1v(s)ds| bounded and E,[|¢(t)|] — 0 as t — oo we are in business.
We rewrite the equation

dE(t) = [YAE() + B(w(t), &(t))]dt; £(0) = ¢

in two pieces. The projections £&(t) and £ (¢) into frequencies |k| < £ and |k| > £. We
denote by 7% and 7 the corresponding projections.

dg® () = [YAEH () + " Buw(1), €(t)]dt
dg!(t) = YA (1) + 7' Blw(t), £(t)]dt
§h(0) =¢"

¢1(0) =¢"



Let us pick
¢t (s)

>\ L ’ﬂ'LAw
TeT (e T ACH () + 7 Blw(). (1)

v(s) =
where ((s) = &(s) —n(s) and
dn(t) = [yAn(t) + B(w(t), n(t)) + v(t)]dt; n(0) = 0
Note that v(s) is in the range of S. We check the following:
ACH(t) = de™ (1) — dn” ()
= [y ASL(@ + 7l Bw(t), £(1)]dt — [yAn™(t) + 7= B(w(t), n(t)]dt — v(t)dt
= [YACE () + 7 B(w(t), ¢(£))]dt — v(t)dt

()
™

Since ¢L(0) < [|¢|| < 1 we have (L (t) = 0 if t > 1. In addition we have for ¢ > 1,

¢t (t) = WACH (8) + 7 B(w(t), ¢H (¢))]dt

Now A has a decay rate of yN2.



