For any noise if the viscosity is large enough there is a unique invariant measure. Let the equation be

$$
\begin{aligned}
d u(t, x) & =\gamma \Delta u-P(u \cdot D) u+d W(t, x) \\
u(0, x) & =u_{0}(x)
\end{aligned}
$$

If we take two solution $u(t), v(t)$ with different initial data, then the difference $w(t)=$ $u(t)-v(t)$ satisfies

$$
\begin{aligned}
\frac{d w(t)}{d t} & =\gamma \Delta w(t)-B(u(t), u(t))+B(v(t), v(t)) \\
& =\gamma \Delta w(t)-B(v(t)+w(t), v(t)+w(t))+B(v(t), v(t)) \\
& =\gamma \Delta w(t)-B(v(t), w(t))-B(w(t), v(t))-B(w(t), w(t))
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d}{d t} \frac{1}{2}\|w(t)\|^{2} & =<\dot{w}(t), w(t)> \\
& =<\gamma \Delta w(t)-B(v(t), w(t))-B(w(t), v(t))-B(w(t), w(t)), w(t)> \\
& =<\gamma \Delta w(t)-B(w(t), v(t)), w(t)> \\
& =<\gamma \Delta w(t)+B(w(t), w(t)), v(t)>
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{d}{d t} \frac{1}{2}\|w(t)\|^{2}+\gamma\|w(t)\|_{1}^{2} & \leq C\|w(t)\|_{1}\|w(t)\|\|v(t)\|_{1} \\
& \leq \frac{\gamma}{2}\|w(t)\|_{1}^{2}+\frac{2 C}{\gamma}\|w(t)\|^{2}\|v(t)\|_{1}^{2}
\end{aligned}
$$

Using Poincaré inequality

$$
\|w\|_{1}^{2} \geq c\|w\|^{2}
$$

we conclude that

$$
\|w(t)\|^{2} \leq\|w(0)\|^{2} \exp \left[\int_{0}^{t}\left[\frac{2 C}{\gamma}\|v(s)\|_{1}^{2}-\frac{c \gamma}{2}\right] d s\right]
$$

In order to prove that $\|w(t)\|$ goes to 0 as $t \rightarrow \infty$ it is enough to show that for any starting point u_{0}, a.e w.r.t $P_{u_{0}}$,

$$
\liminf _{t \rightarrow \infty} \int_{0}^{t}\left[\frac{2 C}{\gamma}\|v(s)\|_{1}^{2}-\frac{c \gamma}{2}\right] d s>+\infty
$$

If $f(u)=\frac{1}{2} \int_{\mathcal{D}}|u(x)|^{2} d x$ then

$$
d f(u)=-\gamma\|u\|_{1}^{2} d t+k d t+<u, d W>
$$

with k given by

$$
k t=E\left[\int_{\mathcal{D}}|W(t, x)|^{2} d x\right]
$$

and

$$
d[f(u)]^{p}=p[f(u)]^{p-1} d f(u)+\frac{p(p-1)}{2}[f(u)]^{p-2}(d f(u))^{2}
$$

In particular

$$
\frac{d}{d t} E\left[[f(u(t))]^{p}\right] \leq E\left[-\gamma\|u(t)\|_{1}^{2} c_{p}[f(u(t))]^{p-1}+C_{p}[f(u(t))]^{p-1}\right]
$$

Using Poincaré inequality

$$
\frac{d}{d t} E\left[[f(u(t))]^{p}\right] \leq E\left[-c \gamma[f(u(t))]^{p}+C_{p}[f(u(t))]^{p-1}\right]
$$

It is easy to show by induction on p, that

$$
\sup _{t} E\left[[f(u(t))]^{p}\right] \leq C_{p}\left(\left\|u_{0}\right\|\right)
$$

We know that

$$
\xi(t)=\|u(t)\|^{2}-\|u(0)\|^{2}+2 \gamma \int_{0}^{t}\|u(s)\|_{1}^{2} d s-k t
$$

is a martingale with quadratic variation

$$
(d \xi(t))^{2}=\left[\int_{\mathcal{D}} \int_{\mathcal{D}}<\rho(x, y) u(t, x), u(t, y)>d x d y\right] d t
$$

Here $\rho(x, y)$ is the covariance of $d W(t, x) d W(t, y)=\rho(x, y) d t$. It is not hard to argue from here that for any initial u_{0} in $L_{2}(\mathcal{D})$ almost surely with respect to the process $P_{u_{0}}$ starting from u_{0} we have

$$
\lim _{t \rightarrow \infty} \frac{\xi(t)}{t}=0
$$

By Poincaré inequality this is like the diffusion

$$
\frac{1}{2} x D^{2}-\gamma x D
$$

and $\frac{x(t)}{t} \rightarrow 0$ a.e. as $t \rightarrow \infty$. Then

$$
\lim _{t \rightarrow \infty}\left[\frac{1}{t} \int_{0}^{t}\|u(s)\|_{1}^{2} d s\right]=\frac{k}{2 \gamma}
$$

Enough if

$$
\frac{C k}{\gamma^{2}}<\frac{c \gamma}{2}
$$

For the next step it is convenient to write the equation in terms of vorticity defined by a scalar

$$
w(x)=D_{y} u-D_{x} v
$$

In Fourier modes

$$
w_{k}=i k_{2} u_{k}-i k_{1} v_{k}
$$

Divergence free condition is

$$
i k_{1} u_{k}+i k_{2} v_{k}=0
$$

providing a solution for (u, v), from w

$$
u_{k}=-\frac{i k_{2}}{|k|^{2}} w_{k}, v_{k}=\frac{i k_{1}}{|k|^{2}} w_{k}
$$

We will write the N -S equations for w_{k}.

$$
\dot{w}_{k}=-\gamma|k|^{2} w_{k}-\frac{1}{4 \pi} \sum_{j+\ell=k}\left(j_{2} \ell_{1}-j_{1} \ell_{2}\right)\left[\frac{1}{|\ell|^{2}}-\frac{1}{|j|^{2}}\right] w_{j} w_{\ell}
$$

The randomly forced version will be

$$
d w_{k}(t)=\left[-\gamma|k|^{2} w_{k}-\frac{1}{4 \pi} \sum_{j+\ell=k}\left(j_{2} \ell_{1}-j_{1} \ell_{2}\right)\left[\frac{1}{|\ell|^{2}}-\frac{1}{|j|^{2}}\right] w_{j} w_{\ell}\right] d t+d z_{k}(t)
$$

where $z_{k}=\bar{z}_{k}$.

$$
\sum e^{i<k, x>} z_{k}(t)=\sum f_{k}(x) \beta_{k}(t)
$$

with f_{k} being $\cos <k, x>$ or $\sin <k, x>$ depending on whether $k \in Z^{+}$or Z^{-}. In other words

$$
z_{k}(t)=\beta_{k}(t)+i \beta_{-k}(t) \text { for } k \in Z^{+}
$$

and

$$
z_{k}(t)=\beta_{-k}(t)-i \beta_{k}(t) \text { for } k \in Z^{-}
$$

The goal is to still be able to prove the uniqueness of the invariant measure even if the viscosity is small and the noise is "on" only at a finite number of frequencies.

The new idea is to replace the strong Feller property by an "approximate" strong feller property. A some what strengthened version of the strong Feller property asserts that for any $t>0$,

$$
x \rightarrow p(t, x, \cdot)
$$

is a continuous map in variation. The almost strong Feller property is a weakening of this. We need the notion of the following metric on probability measures on a metric space.

$$
D(\alpha, \beta)=\sup _{\phi(\cdot) \in \mathcal{L}_{1}}\left|\int \phi(x)[d \alpha-d \beta]\right|
$$

where $\mathcal{L}_{1}=\{\phi:|\phi(x)-\phi(y)| \leq d(x, y)\}$. When $d(x, y)$ is the discrete metric with $d(x, y)=1$ if $x \neq y, D$ becomes the variational distance. It is not hard to see that if $d_{n} \uparrow d$, then $D_{n} \uparrow D$ as well.

We shall say that the transition probability P_{t} on a metric space is (X, ρ) is approximately strongly Feller at x if, there exists $d_{n} \uparrow d$ where d is the discrete metric and times $t_{n} \uparrow \infty$, such that

$$
\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \sup _{y: \rho(x, y) \leq \epsilon} D_{n}\left(P\left(t_{n}, x, \cdot\right), P\left(t_{n}, y, \cdot\right)\right)=0
$$

Note that ρ has nothing to do with d_{n}, d. Suppose $x \in X$ is such that for any neighborhood U of x and any $z \in X, P(s, z, U)>0$ for some s and $P(\cdot, \cdot, \cdot)$ is approximately Feller at x, then the invariant measure ν is unique. Let if possible ν_{1}, ν_{2} be two different invariant measures. We can assume they are orthogonal. Let $\phi(x)$ be a function which is 0 and 1 on the disjoint supports, so that $\int \phi(x) d \nu_{1}=1-\int \phi(x) d \nu_{2}=0$. Clearly for any neighborhood U of $x, \nu_{i}(U)>0$ for $i=1,2$ and

$$
\inf _{x \in U} \int \phi(y) P(t, x, d y)=1-\sup _{x \in U} \int \phi(y) P(t, x, d y)=0
$$

which in turn implies that

$$
\sup _{x, y \in U} D_{n}\left(P\left(t_{n}, x, \cdot\right), P\left(t_{n}, y, \cdot\right)\right)=1
$$

contradicting the approximate strong Feller property. We saw that strong Feller property at time t is a consequence of a gradient estimate of the form

$$
\left\|\left(\nabla P_{t} \phi\right)(x)\right\| \leq C(\|x\|)\|\phi\|_{\infty}
$$

The approximate strong Feller property will follow from

$$
\left\|\left(\nabla P_{t} \phi\right)(x)\right\| \leq C(\|x\|)\left[\|\phi\|_{\infty}+\delta(t)\|\nabla \phi\|_{\infty}\right]
$$

with $\delta(t) \rightarrow 0$ as $t \rightarrow \infty$.
The idea is to let the noise take care of small frequencies and the contraction the high frequencies. We have the equation

$$
d w(t)=\gamma \Delta w(t)+\tilde{B}(w(t), w(t))+d W(t)
$$

The linearized equation for $\xi(t)=D_{\xi} w(t)$ is

$$
d \xi(t)=\gamma \Delta \xi(t)+\widehat{B}(w(t), \xi(t)) ; \xi(0)=\xi
$$

Then

$$
\left(D_{\xi} P_{t} \phi\right)(w)=E_{w}[<(\nabla \phi)(w(t)), \xi(t)>]
$$

We have the integration by parts formula

$$
E_{w}[<(\nabla \phi)(w(t)), \xi(t)>]=E_{w}\left[\phi(w(t)) \int_{0}^{t} v(s) d W(s)\right]
$$

Let us choose a perturbation $v(t)$ adapted to $W(t)$ and perturb infinitesimally

$$
d w(t)=[\gamma \Delta w(t)+\tilde{B}(w(t), w(t))] d t+d W(t)+h v(t) d t
$$

Denoting the derivative by D^{v}, we have the integration by parts formula

$$
D^{v} \phi(w(t))=<\nabla \phi, \eta(t)>
$$

and by Girsanov formula

$$
E_{w}\left[D^{v} \phi(w(t))\right]=E_{w}\left[\phi(w(t)) \int_{0}^{t} S^{-1} v(s) d W(s)\right]
$$

and $\eta(t)$ is the solution of

$$
d \eta(t)=[\gamma \Delta \eta(t)+\widehat{B}(w(t), \eta(t))+v(t)] d t ; \eta(0)=0
$$

Getting a gradient estimate requires matching $\eta(t)=\xi(t)$ at some time t. That would lead to

$$
\left(D_{\xi} P_{t} \phi\right)(w)=E_{w}\left[\phi(w(t)) \int_{0}^{t} S^{-1} v(s) d W(s)\right]
$$

which is amenable to an estimate involving $\|\phi\|_{\infty}$. This requires invertiblility of the covariance operator S. If we have only noise of strength θ in low frequencies upto $|k| \leq \ell$, then we need to do some thing. If we do not match $\eta(t)$ and $\xi(t)$ perhaps there is an error $\zeta(t)=\xi(t)-\eta(t)$. Then

$$
\left(D_{\xi} P_{t} \phi\right)(w)=E_{w}\left[\phi(w(t)) \int_{0}^{t} S^{-1} v(s) d s\right]+E_{w}[(\nabla \phi)(w(t)) \zeta(t)]
$$

If we can keep $E_{w}\left|\int_{0}^{t} S^{-1} v(s) d s\right|$ bounded and $E_{w}[|\zeta(t)|] \rightarrow 0$ as $t \rightarrow \infty$ we are in business. We rewrite the equation

$$
d \xi(t)=[\gamma \Delta \xi(t)+\widehat{B}(w(t), \xi(t))] d t ; \xi(0)=\xi
$$

in two pieces. The projections $\xi^{L}(t)$ and $\xi^{H}(t)$ into frequencies $|k| \leq \ell$ and $|k|>\ell$. We denote by π^{L} and π^{H} the corresponding projections.

$$
\begin{aligned}
d \xi^{L}(t) & =\left[\gamma \Delta \xi^{L}(t)+\pi^{L} \widehat{B}(w(t), \xi(t))\right] d t \\
d \xi^{H}(t) & =\left[\gamma \Delta \xi^{H}(t)+\pi^{H} \widehat{B}(w(t), \xi(t))\right] d t \\
\xi^{L}(0) & =\xi^{L} \\
\xi^{H}(0) & =\xi^{H}
\end{aligned}
$$

Let us pick

$$
v(s)=\frac{\zeta^{L}(s)}{\left\|\zeta^{L}(s)\right\|}+\left[\gamma \Delta \zeta^{L}(t)+\pi^{L} \widehat{B}(w(t), \zeta(t))\right]
$$

where $\zeta(s)=\xi(s)-\eta(s)$ and

$$
d \eta(t)=[\gamma \Delta \eta(t)+\widehat{B}(w(t), \eta(t))+v(t)] d t ; \eta(0)=0
$$

Note that $v(s)$ is in the range of S. We check the following:

$$
\begin{aligned}
d \zeta^{L}(t) & =d \xi^{L}(t)-d \eta^{L}(t) \\
& =\left[\gamma \Delta \xi^{L}(t)+\pi^{L} \widehat{B}(w(t), \xi(t))\right] d t-\left[\gamma \Delta \eta^{L}(t)+\pi^{L} \widehat{B}(w(t), \eta(t))\right] d t-v(t) d t \\
& =\left[\gamma \Delta \zeta^{L}(t)+\pi^{L} \widehat{B}(w(t), \zeta(t))\right] d t-v(t) d t \\
& =-\frac{\zeta^{L}(s)}{\left\|\zeta^{L}(s)\right\|} d t
\end{aligned}
$$

Since $\zeta^{L}(0) \leq\|\xi\| \leq 1$ we have $\zeta^{L}(t)=0$ if $t \geq 1$. In addition we have for $t \geq 1$,

$$
d \zeta^{H}(t)=\left[\gamma \Delta \zeta^{H}(t)+\pi^{H} \widehat{B}\left(w(t), \zeta^{H}(t)\right)\right] d t
$$

Now Δ has a decay rate of γN^{2}.

