
Chapter 1

Brownian Motion

1.1 Stochastic Process

A stochastic process can be thought of in one of many equivalent ways. We
can begin with an underlying probability space (Ω, Σ , P ) and a real valued
stochastic process can be defined as a collection of random variables {x(t, ω)}
indexed by the parameter set T. This means that for each t ∈ T, x(t , ω) is
a measurable map of (Ω ,Σ) → (R,B0) where (R,B0) is the real line with the
usual Borel σ-field. The parameter set often represents time and could be either
the integers representing discrete time or could be [0 , T ], [0, ∞) or (−∞ ,∞)
if we are studying processes in continuous time. For each fixed ω we can view
x(t , ω) as a map of T → R and we would then get a random function of t ∈ T.
If we denote by X the space of functions on T, then a stochastic process becomes
a measurable map from a probability space into X. There is a natural σ-field B
on X and measurability is to be understood in terms of this σ-field. This natural
σ-field, called the Kolmogorov σ-field, is defined as the smallest σ-field such that
the projections {πt(f) = f(t) ; t ∈ T} mapping X → R are measurable. The
point of this definition is that a random function x(· , ω) : Ω → X is measurable
if and only if the random variables x(t , ω) : Ω → R are measurable for each
t ∈ T.

The mapping x(·, ·) induces a measure on (X ,B) by the usual definition

Q(A) = P
[
ω : x(· , ω) ∈ A

]
(1.1)

for A ∈ B. Since the underlying probability model (Ω ,Σ , P ) is irrelevant, it
can be replaced by the canonical model (X, B , Q) with the special choice of
x(t, f) = πt(f) = f(t). A stochastic process then can then be defined simply as
a probability measure Q on (X ,B).

Another point of view is that the only relevant objects are the joint distri-
butions of {x(t1 , ω), x(t2 , ω), · · · , x(tk , ω)} for every k and every finite subset
F = (t1, t2, · · · , tk) of T. These can be specified as probability measures µF on
Rk. These {µF } cannot be totally arbitrary. If we allow different permutations
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2 CHAPTER 1. BROWNIAN MOTION

of the same set, so that F and F ′ are permutations of each other then µF and
µF ′ should be related by the same permutation. If F ⊂ F ′, then we can obtain
the joint distribution of {x(t , ω) ; t ∈ F} by projecting the joint distribution of
{x(t , ω) ; t ∈ F ′} from Rk′ → Rk where k′ and k are the cardinalities of F ′

and F respectively. A stochastic process can then be viewed as a family {µF }
of distributions on various finite dimensional spaces that satisfy the consistency
conditions. A theorem of Kolmogorov says that this is not all that different. Any
such consistent family arises from a Q on (X ,B) which is uniquely determined
by the family {µF }.

If T is countable this is quite satisfactory. X is the the space of sequences
and the σ-field B is quite adequate to answer all the questions we may want
to ask. The set of bounded sequences, the set of convergent sequences, the
set of summable sequences are all measurable subsets of X and therefore we
can answer questions like, does the sequence converge with probability 1, etc.
However if T is uncountable like [0, T ], then the space of bounded functions,
the space of continuous functions etc, are not measurable sets. They do not
belong to B. Basically, in probability theory, the rules involve only a countable
collection of sets at one time and any information that involves the values of
an uncountable number of measurable functions is out of reach. There is an
intrinsic reason for this. In probability theory we can always change the values
of a random variable on a set of measure 0 and we have not changed anything of
consequence. Since we are allowed to mess up each function on a set of measure
0 we have to assume that each function has indeed been messed up on a set of
measure 0. If we are dealing with a countable number of functions the ‘mess
up’ has occured only on the countable union of these invidual sets of measure 0,
which by the properties of a measure is again a set of measure 0. On the other
hand if we are dealing with an uncountable set of functions, then these sets of
measure 0 can possibly gang up on us to produce a set of positive or even full
measure. We just can not be sure.

Of course it would be foolish of us to mess things up unnecessarily. If we
can clean things up and choose a nice version of our random variables we should
do so. But we cannot really do this sensibly unless we decide first what nice
means. We however face the risk of being too greedy and it may not be possible
to have a version as nice as we seek. But then we can always change our mind.

1.2 Regularity

Very often it is natural to try to find a version that has continuous trajectories.
This is equivalent to restricting X to the space of continuous functions on [0, T ]
and we are trying to construct a measure Q on X = C[0 , T ] with the natural σ-
field B. This is not always possible. We want to find some sufficient conditions
on the finite dimensional distributions {µF} that guarantee that a choice of Q
exists on (X ,B).
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Theorem 1.1. (Kolmogorov’s Regularity Theorem) Assume that for any
pair (s, t) ∈ [0 , T ] the bivariate distribution µs,t satisfies

∫ ∫
|x− y|βµs,t(dx , dy) ≤ C|t− s|1+α (1.2)

for some positive constants β, α and C. Then there is a unique Q on (X ,B)
such that it has {µF } for its finite dimensional distributions.

Proof. Since we can only deal effectively with a countable number of random
variables, we restrict ourselves to values at diadic times. Let us, for simplicity,
take T = 1. Denote by Tn time points t of the form t = j

2n for 0 ≤ j ≤ 2n. The
countable union ∪∞

j=0Tj = T0 is a countable dense subset of T. We will con-
struct a probability measure Q on the space of sequences corresponding to the
values of {x(t) : t ∈ T0}, show that Q is supported on sequences that produce
uniformly continuous functions on T0 and then extend them automatically to T
by continuity and the extension will provide us the natural Q on C[0 , 1]. If we
start from the set of values on Tn, the n-th level of diadics, by linear iterpolation
we can construct a version xn(t) that agrees with the original variables at these
diadic points. This way we have a sequence xn(t) such that xn(·) = xn+1(·) on
Tn. If we can show

Q
[
x(·) : sup

0≤t≤1
|xn(t) − xn+1(t)| ≥ 2−nγ

]
≤ C2−nδ (1.3)

then we can conclude that

Q
[
x(·) : lim

n→∞
xn(t) = x∞(t) exists uniformly on [0 , 1]

]
= 1 (1.4)

The limit x∞(·) will be continuous on T and will coincide with x(·) on T0 there
by establishing our result. Proof of (1.3) depends on a simple observation. The
difference |xn(·)− xn+1(·)| achieves its maximum at the mid point of one of the
diadic intervals determined by Tn and hence

sup
0≤t≤1

|xn(t) − xn+1(t)|

≤ sup
1≤j≤2n

|xn(
2j − 1

2n+1
) − xn+1(

2j − 1

2n+1
)|

≤ sup
1≤j≤2n

max
{
|x(2j − 1

2n+1
) − x(

2j

2n+1
)|, |x(2j − 1

2n+1
) − x(

2j − 2

2n+1
)|
}

and we can estimate the left hand side of (1.3) by
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Q
[
x(·) : sup

0≤t≤1
|xn(t) − xn+1(t)| ≥ 2−nγ

]

≤ Q
[

sup
1≤i≤2n+1

|x( i

2n+1
) − x(

i− 1

2n+1
)| ≥ 2−nγ

]

≤ 2n+1 sup
1≤i≤2n+1

Q
[
|x( i

2n+1
) − x(

i− 1

2n+1
)| ≥ 2−nγ

]

≤ 2n+12nβγ sup
1≤i≤2n+1

EQ
[
|x( i

2n+1
) − x(

i− 1

2n+1
)|β

]

≤ C2n+1 2nβγ 2−(1+α)(n+1)

≤ C2−nδ

provided δ ≤ α− βγ. For given α, β we can pick γ < αβ and we are done.

An equivalent version of this theorem is the following.

Theorem 1.2. If x(t , ω) is a stochastic process on (Ω ,Σ , P ) satisfying

EP
[
|x(t) − x(s)|β

]
≤ C|t− s|1+α

for some positive constants α, β and C, then if necessary , x(t, ω) can be modified
for each t on a set of measure zero, to obtain an equivalent version that is almost
surely continuous.

As an important application we consider Brownian Motion, which is defined
as a stochastic process that has multivariate normal distributions for its finite
dimensional distributions. These normal distributions have mean zero and the
variance covariance matrix is specified by Cov(x(s), x(t)) = min(s, t). An ele-
mentary calculation yields

E|x(s) − x(t)|4 = 3|t− s|2

so that Theorem 1.1 is applicable with β = 4, α = 1 and C = 3.
To see that some restriction is needed, let us consider the Poisson process

defined as a process with independent increments with the distribution of x(t)−
x(s) being Poisson with parameter t− s provided t > s. In this case since

P [x(t) − x(s) ≥ 1] = 1 − exp[−(t− s)]

we have, for every n ≥ 0,

E|x(t) − x(s)|n ≥ 1 − exp[−|t− s|] ≃ C|t− s|

and the conditions for Theorem 1.1 are never satisfied. It should not be, because
after all a Poisson process is a counting process and jumps whenever the event
that it is counting occurs and it would indeed be greedy of us to try to put the
measure on the space of continuous functions.
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Remark 1.1. The fact that there cannot be a measure on the space of continu-
ous functions whose finite dimensional distributions coincide with those of the
Poisson process requires a proof. There is a whole class of nasty examples of
measures {Q} on the space of continuous functions such that for every t ∈ [0 , 1]

Q
[
ω : x(t , ω) is a rational number

]
= 1

The difference is that the rationals are dense, whereas the integers are not. The
proof has to depend on the fact that a continuous function that is not identically
equal to some fixed integer must spend a positive amount of time at nonintegral
points. Try to make a rigorous proof using Fubini’s theorem.

1.3 Garsia, Rodemich and Rumsey inequality.

If we have a stochastic process x(t , ω) and we wish to show that it has a nice
version, perhaps a continuous one, or even a Holder continuous or differentiable
version, there are things we have to estimate. Establishing Holder continuity
amounts to estimating

ǫ(ℓ) = P
[
sup
s,t

|x(s) − x(t)|
|t− s|α ≤ ℓ

]

and showing that ǫ(ℓ) → 1 as ℓ→ ∞. These are often difficult to estimate and
require special methods. A slight modification of the proof of Theorem 1.1 will
establish that the nice, continuous version of Brownian motion actually satisfies
a Holder condition of exponent α so long as 0 < α < 1

2 .
On the other hand if we want to show only that we have a version x(t , ω)

that is square integrable, we have to estimate

ǫ(ℓ) = P
[ ∫ 1

0

|x(t , ω)|2dt ≤ ℓ
]

and try to show that ǫ(ℓ) → 1 as ℓ→ ∞. This task is somewhat easier because
we could control it by estimating

EP
[ ∫ 1

0

|x(t , ω)|2 dt
]

and that could be done by the use of Fubini’s theorem. After all

EP
[ ∫ 1

0

|x(t , ω)|2 dt
]

=

∫ 1

0

EP
[
|x(t , ω)|2

]
dt

Estimating integrals are easier that estimating suprema. Sobolev inequality
controls suprema in terms of integrals. Garsia, Rodemich and Rumsey inequality
is a generalization and can be used in a wide variety of contexts.
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Theorem 1.3. Let Ψ(·) and p(·) be continuous strictly increasing functions
on [0 ,∞) with p(0) = Ψ(0) = 0 and Ψ(x) → ∞ as x → ∞. Assume that a
continuous function f(·) on [0 , 1] satisfies

∫ 1

0

∫ 1

0

Ψ

( |f(t) − f(s)|
p(|t− s|)

)
ds dt = B <∞. (1.5)

Then

|f(0) − f(1)| ≤ 8

∫ 1

0

Ψ−1

(
4B

u2

)
dp(u) (1.6)

The double integral (1.5) has a singularity on the diagonal and its finiteness
depends on f, p and Ψ. The integral in (1.6) has a singularity at u = 0 and its
convergence requires a balancing act between Ψ(·) and p(·). The two conditions
compete and the existence of a pair Ψ(·) , p(·) satisfying all the conditions will
turn out to imply some regularity on f(·).

Let us first assume Theorem 1.3 and illustrate its uses with some examples.
We will come back to its proof at the end of the section. First we remark that
the following corollary is an immediate consequence of Theorem 1.3.

Corollary 1.4. If we replace the interval [0 , 1] by the interval [T1 , T2] so that

BT1,T2 =

∫ T2

T1

∫ T2

T1

Ψ

( |f(t) − f(s)|
p(|t− s|)

)
ds dt

then

|f(T2) − f(T1)| ≤ 8

∫ T2−T1

0

Ψ−1

(
4B

u2

)
dp(u)

For 0 ≤ T1 < T2 ≤ 1 because BT1,T2 ≤ B0,1 = B, we can conclude from (1.5),
that the modulus of continuity ̟f (δ) satisfies

̟f (δ) = sup
0≤s,t≤1
|t−s|≤δ

|f(t) − f(s)| ≤ 8

∫ δ

0

Ψ−1

(
4B

u2

)
dp(u) (1.7)

Proof. (of Corollary). If we map the interval [T1 , T2] into [0 , 1] by t′ = t−T1

T2−T1

and redefine f ′(t) = f(T1 + (T2 − T1)t) and p′(u) = p((T2 − T1)u), then

∫ 1

0

∫ 1

0

Ψ
[ |f ′(t) − f ′(s)|

p′(|t− s|)
]
ds dt

=
1

(T2 − T1)2

∫ T2

T1

∫ T2

T1

Ψ
[ |f(t) − f(s)|
p(|t− s|)

]
ds dt

=
BT1,T2

(T2 − T1)2
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and

|f(T2) − f(T1)| = |f ′(1) − f ′(0)|

≤ 8

∫ 1

0

Ψ−1

(
4BT1,T2

(T2 − T1)2 u2

)
dp′(u)

= 8

∫ (T2−T1)

0

Ψ−1

(
4BT1,T2

u2

)
dp(u)

In particular (1.7) is now an immediate consequence.

Let us now turn to Brownian motion or more generally processes that satisfy

EP

[
|x(t) − x(s)|β

]
≤ C|t− s|1+α

on [0 , 1]. We know from Theorem 1.1 that the paths can be chosen to be con-
tinuous. We will now show that the continuous version enjoys some additional
regularity. We apply Theorem 1.3 with Ψ(x) = xβ , and p(u) = u

γ
β . Then

EP

[ ∫ 1

0

∫ 1

0

Ψ

( |x(t) − x(s)|
p(|t− s|)

)
ds dt

]

=

∫ 1

0

∫ 1

0

EP

[ |x(t) − x(s)|β
|t− s|γ

]
dsdt

≤ C

∫ 1

0

∫ 1

0

|t− s|1+α−γ dsdt

= C Cδ

where Cδ is a constant depending only on δ = 2 + α − γ and is finite if δ > 0.
By Fubini’s theorem, almost surely

∫ 1

0

∫ 1

0

Ψ

( |x(t) − x(s)|
p(|t− s|)

)
ds dt = B(ω) <∞

and by Tchebychev’s inequality

P
[
B(ω) ≥ B

]
≤ C Cδ

B
.

On the other hand

8

∫ h

0

(
4B

u2
)

1
β du

γ
β = 8

γ

β
(4B)

1
β

∫ h

0

u
γ−2

β
−1du

= 8
γ

γ − 2
(4B)

1
β h

γ−2
β

We obtain Holder continuity with exponent γ−2
β

which can be anything less than
α
β
. For Brownian motion α = β

2 − 1 and therefore α
β

can be made arbitrarily

close to 1
2 .
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Remark 1.2. With probability 1 Brownian paths satisfy a Holder condition with
any exponent less than 1

2 .

It is not hard to see that they do not satisfy a Holder condition with exponent
1
2

Exercise 1.1. Show that

P
[

sup
0≤s, t≤1

|x(t) − x(s)|√
|t− s|

= ∞
]

= 1.

Hint: The random variables x(t)−x(s)√
|t−s|

have standard normal distributions for

any interval [s, t] and they are independent for disjoint intervals. We can find
as many disjoint intervals as we wish and therefore dominate the Holder con-
stant from below by the supremum of absolute values of an arbitrary number
of independent Gaussians.

Exercise 1.2. (Precise modulus of continuity). The choice of Ψ(x) = exp[αx2]

with α < 1
2 and p(u) = u

1
2 produces a modulus of continuity of the form

̟x(δ) ≤ 8

∫ δ

0

√
1

α
log

[
1 +

4B

u2

] 1

2
√
u
du

that produces eventually a statement

P
[
lim sup

δ→0

̟x(δ)√
δ log 1

δ

≤ 16
]

= 1.

Remark 1.3. This is almost the final word, because the argument of the previous
exercise can be tightened slightly to yield

P
[
lim sup

δ→0

̟x(δ)√
δ log 1

δ

≥
√

2
]

= 1

and according to a result of Paul Lévy

P
[
lim sup

δ→0

̟x(δ)√
δ log 1

δ

=
√

2
]

= 1.

Proof. (of Theorem 1.3.) Define

I(t) =

∫ 1

0

Ψ

( |f(t) − f(s)|
p(|t− s|)

)
ds

and

B =

∫ 1

0

I(t) dt
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There exists t0 ∈ (0 , 1) such that I(t0) ≤ B. We shall prove that

|f(0) − f(t0)| ≤ 4

∫ 1

0

Ψ−1

(
4B

u2

)
dp(u) (1.8)

By a similar argument

|f(1) − f(t0)| ≤ 4

∫ 1

0

Ψ−1

(
4B

u2

)
dp(u)

and combining the two we will have (1.6). To prove 1.8 we shall pick recursively
two sequences {un} and {tn} satisfying

t0 > u1 > t1 > u2 > t2 > · · · > un > tn > · · ·

in the following manner. By induction, if tn−1 has already been chosen, define

dn = p(tn−1)

and pick un so that p(un) = dn

2 . Then

∫ un

0

I(t) dt ≤ B

and ∫ un

0

Ψ

( |f(tn−1) − f(s)|
p(|tn−1 − s|)

)
ds ≤ I(tn−1)

Now tn is chosen so that

I(tn) ≤ 2B

un

and

Ψ

( |f(tn) − f(tn−1)|
p(|tn − tn−1|)

)
≤ 2

I(tn−1)

un

≤ 4B

un−1 un

≤ 4B

u2
n

We now have

|f(tn) − f(tn−1)| ≤ Ψ−1

(
4B

u2
n

)
p(tn−1 − tn) ≤ Ψ−1

(
4B

u2
n

)
p(tn−1).

p(tn−1) = 2p(un) = 4[p(un) − 1

2
p(un)] ≤ 4[p(un) − p(un+1)]

Then,

|f(tn) − f(tn−1)| ≤ 4Ψ−1

(
4B

u2
n

)
[p(un) − p(un+1)] ≤ 4

∫ un

un+1

Ψ−1

(
4B

u2

)
dp(u)

Summing over n = 1, 2, · · · , we get

|f(t0) − f(0)| ≤ 4

∫ u1

0

Ψ−1

(
4B

u2

)
p(du) ≤ 4

∫ u1

0

Ψ−1

(
4B

u2

)
p(du)

and we are done.
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Example 1.1. Let us consider a stationary Gaussian process with

ρ(t) = E[X(s)X(s+ t)]

and denote by

σ2(t) = E[(X(t) −X(0))2] = 2(ρ(0) − ρ(t)).

Let us suppose that σ2(t) ≤ C| log t|−a for some a > 1 and C < ∞. Then we
can apply Theorem 1.3 and establish the existence of an almost sure continuous
version by a suitable choice of Ψ and p.

On the other hand we will show that, if σ2(t) ≥ c| log t|−1, then the paths are
almost surely unbounded on every time interval. It is generally hard to prove
that some thing is unbounded. But there is a nice trick that we will use. One
way to make sure that a function f(t) on t1 ≤ t ≤ t2 is unbounded is to make
sure that the measure µf (A) = LebMes {t : f(t) ∈ A} is not supported on a
compact interval. That can be assured if we show that µf has a density with
respect to the Lebsgue measure on R with a density φf (x) that is real analytic,
which in turn will be assured if we show that

∫ ∞

−∞

|µ̂f (ξ)|eα|ξ| dξ <∞

for some α > 0. By Schwarz’s inequality it is sufficient to prove that

∫ ∞

−∞

|µ̂f (ξ)|2eα|ξ| dξ <∞

for some α > 0. We will prove

∫ ∞

−∞

E

[∣∣∣∣
∫ t2

t1

ei ξ X(t) dt

∣∣∣∣
2]
eαξ dξ <∞

for some α > 0. Sine we can replace α by −α , this will control

∫ ∞

−∞

E

[∣∣∣∣
∫ t2

t1

ei ξ X(t) dt

∣∣∣∣
2]
eα|ξ| dξ <∞
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and we can apply Fubini’s theorem to complete the proof.

∫ ∞

−∞

E

[∣∣∣∣
∫ t2

t1

ei ξ X(t) dt

∣∣∣∣
2]
eαξ dξ

=

∫ ∞

−∞

E

[∫ t2

t1

∫ t2

t1

ei ξ (X(t)−X(s)) ds dt

]
eαξ dξ

=

∫ ∞

−∞

∫ t2

t1

∫ t2

t1

E

[
ei ξ (X(t)−X(s))

]
ds dt eαξ dξ

=

∫ ∞

−∞

∫ t2

t1

∫ t2

t1

e−
σ2(t−s)ξ2

2 ds dt eαξ dξ

=

∫ t2

t1

∫ t2

t1

√
2π

σ(t− s)
e

α2

2σ2(t−s)

≤
∫ t2

t1

∫ t2

t1

√
2π

σ(t− s)
e

α2| log |(t−s)||
2c ds dt

<∞

provided α is small enough.
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Chapter 2

Stochastic Integration.

2.1 Brownian Motion as a Martingale

P is the Wiener measure on (Ω, B) where Ω = C[0, T ] and B is the Borel σ-field
on Ω. In addition we denote by Bt the σ-field generated by x(s) for 0 ≤ s ≤ t.
It is easy to see tha x(t) is a martingale with respect to (Ω, Bt, P ), i.e for each
t > s in [0, T ]

EP {x(t)|Bs} = x(s) a.e. P (2.1)

and so is x(t)2 − t. In other words

EP {x(t)2 − t |Fs} = x(s)2 − s a.e. P (2.2)

The proof is rather straight forward. We write x(t) = x(s) + Z where Z =
x(t) − x(s) is a random variable independent of the past history Bs and is
distributed as a Gaussian random variable with mean 0 and variance t − s.
Therefore EP {Z|Bs} = 0 and EP {Z2|Bs} = t− s a.e P . Conversely,

Theorem 2.1. Lévy’s theorem. If P is a measure on (C[0, T ], B) such that
P [x(0) = 0] = 1 and the the functions x(t) and x2(t) − t are martingales with
respect to (C[0, T ], Bt, P ) then P is the Wiener measure.

Proof. The proof is based on the observation that a Gaussian distribution is
determined by two moments. But that the distribution is Gaussian is a conse-
quence of the fact that the paths are almost surely continuous and not part of
our assumptions. The actual proof is carried out by establishing that for each
real number λ

Xλ(t) = exp
[
λx(t) − λ2

2
t
]

(2.3)

is a martingale with respect to (C[0, T ], Bt, P ). Once this is established it is
elementary to compute

EP
[
exp

[
λ(x(t) − x(s))

]
|Bs

]
= exp

[λ2

2
(t− s)

]

13
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which shows that we have a Gaussian Process with independent increments with
two matching moments. The proof of (2.3) is more or less the same as proving
the central limit theorem. In order to prove (2.3) we can assume with out loss
of generality that s = 0 and will show that

EP
[
exp

[
λx(t) − λ2

2
t
]]

= 1 (2.4)

To this end let us define successively τ0,ǫ = 0,

τk+1,ǫ = min
[
inf

{
s : s ≥ τk,ǫ, |x(s) − x(τk,ǫ)| ≥ ǫ

}
, t , τk,ǫ + ǫ

]

Then each τk,ǫ is a stopping time and eventually τk,ǫ = t by continuity of paths.
The continuity of paths also guarantees that |x(τk+1,ǫ)− x(τk,ǫ)| ≤ ǫ. We write

x(t) =
∑

k≥0

[x(τk+1,ǫ) − x(τk,ǫ)]

and
t =

∑

k≥0

[τk+1,ǫ − τk,ǫ]

To establish (2.4) we calculate the quantity on the left hand side as

lim
n→∞

EP
[
exp

[ ∑

0≤k≤n

[
λ[x(τk+1,ǫ) − x(τk,ǫ)] −

λ2

2
[τk+1,ǫ − τk,ǫ]

]]]

and show that it is equal to 1. Let us cosider the σ-field Fk = Bτk,ǫ
and the

quantity

qk(ω) = EP
[
exp

[
λ[x(τk+1,ǫ) − x(τk,ǫ)] −

λ2

2
[τk+1,ǫ − τk,ǫ]

]∣∣∣∣Fk

]

Clearly, if we use Taylor expansion and the fact that x(t) as well as x(t)2 − t

are martingales

|qk(ω) − 1| ≤ CEP
[[
|λ|3|x(τk+1,ǫ) − x(τk,ǫ)|3 + λ2|τk+1,ǫ − τk,ǫ|2

]∣∣∣∣Fk

]

≤ Cλ ǫ E
P
[[
|x(τk+1,ǫ) − x(τk,ǫ)|2 + |τk+1,ǫ − τk,ǫ|

]∣∣Fk

]

= 2Cλ ǫ E
P
[
|τk+1,ǫ − τk,ǫ|

∣∣Fk

]

In particular for some constant C depending on λ

qk(ω) ≤ EP
[
exp

[
C ǫ [τk+1,ǫ − τk,ǫ]

]∣∣Fk

]

and by induction

lim sup
n→∞

EP
[
exp

[ ∑

0≤k≤n

[
λ[x(τk+1,ǫ) − x(τk,ǫ)]−

λ2

2
[τk+1,ǫ − τk,ǫ]

]]]

≤ exp[C ǫ t ]
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Since ǫ > 0 is arbitrary we prove one half of (2.4). Notice that in any case
supω |qk(ω) − 1| ≤ ǫ. Hence we have the lower bound

qk(ω) ≥ EP
[
exp

[
− C ǫ [τk+1,ǫ − τk ǫ]

]∣∣∣∣Fk

]

which can be used to prove the other half. This completes the proof of the
theorem.

Exercise 2.1. Why does Theorem 2.1 fail for the process x(t) = N(t)− t where
N(t) is the standard Poisson Process with rate 1?

Remark 2.1. One can use the Martingale inequality in order to estimate the
probability P{sup0≤s≤t |x(s)| ≥ ℓ}. For λ > 0, by Doob’s inequality

P
[

sup
0≤s≤t

exp
[
λx(s) − λ2

2
s
]
≥ A

]
≤ 1

A

and

P
[

sup
0≤s≤t

x(s) ≥ ℓ
]
≤ P

[
sup

0≤s≤t

[x(s) − λs

2
] ≥ ℓ− λt

2

]

= P
[

sup
0≤s≤t

[λx(s) − λ2s

2
] ≥ λℓ− λ2t2

]

≤ exp[−λℓ+
λ2t

2
]

Optimizing over λ > 0, we obtain

P
[

sup
0≤s≤t

x(s) ≥ ℓ
]
≤ exp[− ℓ

2

2t
]

and by symmetry

P
[

sup
0≤s≤t

|x(s)| ≥ ℓ
]
≤ 2 exp[− ℓ

2

2t
]

The estimate is not too bad because by reflection principle

P
[

sup
0≤s≤t

x(s) ≥ ℓ
]

= 2P
[
x(t) ≥ ℓ

]
=

√
2

π t

∫ ∞

ℓ

exp[−x
2

2 t
] dx

Exercise 2.2. One can use the estimate above to prove the result of Paul Lévy

P
[
lim sup

δ→0

sup 0≤s,t≤1
|s−t|≤δ

|x(s) − x(t)|
√
δ log 1

δ

=
√

2
]

= 1

We had an exercise in the previous section that established the lower bound.
Let us concentrate on the upper bound. If we define

∆δ(ω) = sup
0≤s,t≤1
|s−t|≤δ

|x(s) − x(t)|
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first check that it is sufficient to prove that for any ρ < 1, and a >
√

2

∑

n

P
[
∆ρn(ω) ≥ a

√
nρn log

1

ρ

]
<∞ (2.5)

To estimate ∆ρn(ω) it is sufficient to estimate supt∈Ij
|x(t) − x(tj)| for kǫρ

−n

overlapping intervals {Ij} of the form [tj , tj + (1 + ǫ)ρn ] with length (1 + ǫ)ρn.
For each ǫ > 0, kǫ = ǫ−1 is a constant such that any interval [s , t] of length no
larger than ρn is completely contained in some Ij with tj ≤ s ≤ tj + ǫρn. Then

∆ρn(ω) ≤ sup
j

[
sup
t∈Ij

|x(t) − x(tj)| + sup
tj≤s≤tj+ǫρn

|x(s) − x(tj)|
]

Therefore, for any a = a1 + a2,

P

[
∆ρn(ω) ≥ a

√
nρn log

1

ρ

]

≤ P

[
sup

j

sup
t∈Ij

|x(t) − x(tj)| ≥ a1

√
nρn log

1

ρ

]

+ P

[
sup

j

sup
tj≤s≤tj+ǫρn

|x(s) − x(tj)| ≥ a2

√
nρn log

1

ρ

]

≤ 2kǫρ
−n

[
exp[−

a2
1 nρ

n log 1
ρ

2(1 + ǫ)ρn
] + exp[−

a2
2 nρ

n log 1
ρ

2ǫρn
]

]

Since a >
√

2, we can pick a1 >
√

2 and a2 > 0. For ǫ > 0 sufficiently small
(2.5) is easily verified.

2.2 Brownian Motion as a Markov Process.

Brownian motion is a process with independent increments, the increment over
any interval of length t has the Gaussian distribution with density

q(t, y) =
1

(2πt)
d
2

e−
‖y‖2

2t

It is therefore a Markov process with transition probability

p(t, x, y) = q(t, y − x) =
1

(2πt)
d
2

e−
‖y−x‖2

2t

The operators

(Ttf)(x) =

∫
f(y)p(t, x, y)dy

satisfy TtTs = TsTt = Tt+s, i.e the semigroup property. This is seen to be an
easy consequence of the Chapman-Kolmogorov equations

∫
p(t, x, y)p(s, y, z)dy = p(t+ s, x, z)
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The infinitesimal generator of the semigroup

(Af)(x) = lim
t→0

Ttf − f

t

is easily calculated as

(Af)(x) = lim
t→0

1

t

∫
[f(x+ y) − f(x)]q(t, y)dy

= lim
t→0

1

t

∫
[f(x+

√
ty) − f(x)]q(t, y)dy

=
1

2
(∆f)(x)

by expanding f in a Taylor series in
√
t. The term that is linear in y integrates

to 0 and the quadratic term leads to the Laplace operator. The differential
equation

dTt

dt
= TtA = ATt

implies that u(t, x) = (Ttf)(x) satisfies the heat equation

ut =
1

2
∆u

and
d

dt

∫
f(y)p(t, x, y)dy =

∫
1

2
(∆f)(y)p(t, x, y)dy

In particular if Ex is expectation with respect to Brownian motion starting from
x,

Ex[f(x(t)] − f(x) = Ex

[∫ t

0

1

2
(∆f)(x(s))ds

]

By the Markov property

Ex

[
f(x(t) − f(x(s)) −

∫ t

s

1

2
(∆f)(x(τ))dτ

∣∣Fs

]
= 0

or

f(x(t) − f(x(0)) −
∫ t

0

1

2
(∆f)(x(τ))dτ

is a Martingale with respect to Brownian Motion.
It is just one step from here to show that for functions u(t, x) that are smooth

u(t, x(t)) − u(0, x(0)) −
∫ t

0

[
∂u

∂t
+

1

2
∆u](s, x(s))ds (2.6)

is a martingale. There are in addition some natural exponential Martingales
associated with Brownian motion. For instance for any λ ∈ Rd,

exp[< λ, x(t) − x(0) > −1

2
‖λ‖2t]
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is a martingale. More generally for any smooth function u(t, x) that is bounded
away from 0,

u(t, x(t)) exp

[
−

∫ t

0

[ ∂u
∂t

+ 1
2∆u

u

]
(s, x(s))ds

]
(2.7)

is a martingale. In particular if

∂u

∂t
+

1

2
∆u+ v(t, x)u(t, x) = 0

then

u(t, x(t)) exp[

∫ t

0

v(s, x(s))ds]

is a Martingale, which is the Feynman-Kac formula. To prove (2.7) from (2.6),
we make use of the following elementary lemma.

Lemma 2.2. Suppose M(t) is almost surely continuous martingale with respect
to (Ω,Ft, P ) and A(t) is a progressively measurable function, which is almost
surely continuous and of bounded variation in t. Then, under the assumption
that sup0≤s≤t |M(s)|V ar0,tA(·, ω) is integrable,

M(t)A(t) −M(0)A(0) −
∫ t

0

M(s)dA(s)

is again a Martingle.

Proof. The main step is to see why

E[M(t)A(t) −M(0)A(0) −
∫ t

0

M(s)dA(s)] = 0

Then the same argument, repeated conditionally will prove the martingale prop-
erty.

E[M(t)A(t) −M(0)A(0)] = lim
∑

j

E[M(tj)A(tj) −M(tj−1)A(tj−1)]

= lim
∑

j

E[M(tj)A(tj−1) −M(tj−1)A(tj−1)]

+ lim
∑

j

E[M(tj)[A(tj) −A(tj−1)]

= lim
∑

j

E[M(tj)[A(tj) − A(tj−1)]

= E

[ ∫ t

0

M(s)dA(s)

]

The limit is over the partition {tj} becoming dense in [0, t] and ones uses the
integrability of sup0≤s≤t |M(s)|V ar0,tA(·) and the dominated convergence the-
orem to complete the proof.
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Now, to go from (2.6) to (2.7), we choose

M(t) = u(t, x(t)) − u(0, x(0)) −
∫ t

0

[
∂u

∂t
+

1

2
∆u](s, x(s))ds

and

A(t) = exp

[
−

∫ t

0

[ ∂u
∂t

+ 1
2∆u

u

]
(s, x(s))ds

]

2.3 Stochastic Integrals

If y1, . . . , yn is a martingale relative to the σ-fields Fj , and if ej(ω) are random
functions that are Fj measurable, the sequence

zj =

j−1∑

k=0

ek(ω)[yk+1 − yk]

is again a martingale with respect to the σ-fields Fj , provided the expectations
are finite. A computation shows that if

aj(ω) = EP [(yj+1 − yj)
2|Fj ]

then

EP [z2
j ] =

j−1∑

k=0

EP
[
ak(ω)|ek(ω)|2

]

or more precisely

EP
[
(zj+1 − zj)

2|Fj

]
= aj(ω)|ej(ω)|2 a.e. P

Formally one can write

δzj = zj+1 − zj = ej(ω)δyj = ej(ω)(yj+1 − yj)

zj is called a martingale transform of yj and the size of zn measured by its mean

square is exactly equal to EP
[∑n−1

j=0 |ej(ω)|2 aj(ω)
]
. The stochastic integral is

just the continuous analog of this.

Theorem 2.3. Let y(t) be an almost surely continuous martingale relative to
(Ω,Ft, P ) such that y(0) = 0 a.e. P , and

y2(t) −
∫ t

0

a(s , ω)ds

is again a martingale relative to (Ω,Ft, P ), where a(s , ω)ds is a bounded progres-
sively measurable function. Then for progressively measurable functions e(· , ·)
satisfying, for every t > 0,

EP

[ ∫ t

0

e2(s)a(s)ds

]
<∞
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the stochastic integral

z(t) =

∫ t

0

e(s)dy(s)

makes sense as an almost surely continuous martingale with respect to (Ω,Ft, P )
and

z2(t) −
∫ t

0

e2(s)a(s)ds

is again a martingale with respect to (Ω,Ft, P ). In particular

EP
[
z2(t)

]
= EP

[ ∫ t

0

e2(s)a(s)ds
]

(2.8)

Proof.
Step 1. The statements are obvious if e(s) is a constant.

Step 2. Assume that e(s) is a simple function given by

e(s , ω) = ej(ω) for tj ≤ s < tj+1

where ej(ω) is Ftj
measurable and bounded for 0 ≤ j ≤ N and tN+1 = ∞.

Then we can define inductively

z(t) = z(tj) + e(tj , ω)[y(t) − y(tj)]

for tj ≤ t ≤ tj+1. Clearly z(t) and

z2(t) −
∫ t

0

e2(s , ω)a(s , ω)ds

are martingales in the interval [tj , tj+1]. Since the definitions match at the end
points the martingale property holds for t ≥ 0.

Step 3. If ek(s , ω) is a sequence of uniformly bounded progressively measurable
functions converging to e(s , ω) as k → ∞ in such a way that

lim
k→∞

∫ t

0

|ek(s)|2a(s)ds = 0

for every t > 0, because of the relation (2.8)

lim
k,k′→∞

EP

[
|zk(t) − zk′(t)|2

]
= lim

k,k′→∞
EP

[ ∫ t

0

|ek(s) − ek′(s)|2a(s)ds
]

= 0.

Combined with Doob’s inequality, we conclude the existence of a an almost
surely continuous martingale z(t) such that

lim
k→∞

EP

[
sup

0≤s≤t

|zk(s) − z(s)|2
]

= 0
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and clearly

z2(t) −
∫ t

0

e2(s)a(s)ds

is an (Ω,Ft, P ) martingale.

Step 4. All we need to worry now is about approximating e(· , ·). Any bounded
progressively measurable almost surely continuous e(s , ω) can be approximated

by ek(s , ω) = e( [ks]∧k2

k
, ω) which is piecewise constant and levels off at time k.

It is trivial to see that for every t > 0,

lim
k→∞

∫ t

0

|ek(s) − e(s)|2a(s) ds = 0

Step 5. Any bounded progressively measurable e(s , ω) can be approximated
by continuous ones by defining

ek(s , ω) = k

s∫

(s− 1
k
)∨0

e (u , ω)du

and again it is trivial to see that it works.

Step 6. Finally if e(s , ω) is un bounded we can approximate it by truncation,

ek(s , ω) = fk(e(s , ω))

where fk(x) = x for |x| ≤ k and 0 otherwise.
This completes the proof of the theorem.

Suppose we have an almost surely continuous process x(t , ω) defined on some
(Ω,Ft, P ), and progressively measurable functions b(s, ω), a(s, ω) with a ≥ 0,
such that

x(t , ω) = x(0 , ω) +

∫ t

0

b(s , ω)ds+ y(t , ω)

where y(t, ω) and

y2(t, ω) −
∫ t

0

a(s, ω)ds

are martingales with respect to (Ω,Ft, P ). The stochastic integral z(t) =∫ t

0
e(s)dx(s) is defined by

z(t) =

∫ t

0

e(s)dx(s) =

∫ t

0

e(s)b(s)ds+

∫ t

0

e(s)dy(s)

For this to make sense we need for every t,

EP
[ ∫ t

0

|e(s)b(s)|ds
]
<∞ and EP

[ ∫ t

0

|e(s)|2a(s)ds
]
<∞
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If we assume for simplicity that eb and e2a are uniformly bounded functions in
t and ω. It then follows, that for any F0 measurable z(0), that

z(t) = z(0) +

∫ t

0

e(s)dx(s)

is again an almost surely continuous process such that

z(t) = z(0) +

∫ t

0

b′(s, ω)ds+ y′(t, ω)

where y′(t) and

y′(t)2 −
∫ t

0

a′(s, ω)ds

are martingales with b′ = eb and a′ = e2a.

Exercise 2.3. If e is such that eb and e2a are bounded, then prove directly that
the exponentials

exp
[
λ(z(t) − z(0)) − λ

∫ t

0

e(s)b(s)ds− λ2

2

∫ t

0

a(s)e2(s)ds
]

are (Ω,Ft, P ) martingales.

We can easily do the mutidimensional generalization. Let y(t) be a vector
valued martingale with n components y1(t), · · · , yn(t) such that

yi(t)yj(t) −
∫ t

o

ai,j(s , ω)ds

are again martingales with respect to (Ω,Ft, P ). Assume that the progressively
measurable functions{ai,j(t , ω)} are symmetric and positive semidefinite for ev-
ery t and ω and are uniformly bounded in t and ω. Then the stochastic integral

z(t) = z(0) +

∫ t

0

< e(s), dy(s) >= z(0) +
∑

i

∫ t

0

ei(s)dyi(s)

is well defined for vector velued progressively measurable functions e(s , ω) such
that

EP
[ ∫ t

0

< e(s) , a(s)e(s) > ds
]
<∞

In a similar fashion to the scalar case, for any diffusion process x(t) corre-
sponding to b(s , ω) = {bi(s , ω)} and a(s , ω) = {ai,j(s , ω)} and any e(s , ω)) =
{ei(s , ω)} which is progressively measurable and uniformly bounded

z(t) = z(0) +

∫ t

0

< e(s) , dx(s) >
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is well defined and is a diffusion corresponding to the coefficients

b̃(s , ω) =< e(s , ω) , b(s , ω) > and ã(s , ω) =< e(s , ω) , a(s , ω)e(s , ω) >

It is now a simple exercise to define stocahstic integrals of the form

z(t) = z(0) +

∫ t

0

σ(s , ω)dx(s)

where σ(s , ω) is a matrix of dimension m × n that has the suitable properties
of boundedness and progressive measurability. z(t) is seen easily to correspond
to the coefficients

b̃(s) = σ(s)b(s) and ã(s) = σ(s)a(s)σ∗(s)

The analogy here is to linear transformations of Gaussian variables. If ξ is a
Gaussian vector in Rn with mean µ and covariance A, and if η = Tξ is a linear
transformation from Rn to Rm, then η is again Gaussian in Rm and has mean
Tµ and covariance matrix TAT ∗.

Exercise 2.4. If x(t) is Brownian motion in Rn and σ(s , ω) is a progreessively
measurable bounded function then

z(t) =

∫ t

0

σ(s , ω)dx(s)

is again a Brownian motion in Rn if and only if σ is an orthogonal matrix for
almost all s (with repect to Lebesgue Measure) and ω (with respect to P )

Exercise 2.5. We can mix stochastic and ordinary integrals. If we define

z(t) = z(0) +

∫ t

0

σ(s)dx(s) +

∫ t

0

f(s)ds

where x(s) is a process corresponding to b(s), a(s), then z(t) corresponds to

b̃(s) = σ(s)b(s) + f(s) and ã(s) = σ(s)a(s)σ∗(s)

The analogy is again to affine linear transformations of Gaussians η = Tξ + γ.

Exercise 2.6. Chain Rule. If we transform from x to z and again from z to w,
it is the same as makin a single transformation from z to w.

dz(s) = σ(s)dx(s) + f(s)ds and dw(s) = τ(s)dz(s) + g(s)ds

can be rewritten as

dw(s) = [τ(s)σ(s)]dx(s) + [τ(s)f(s) + g(s)]ds
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2.4 Ito’s Formula.

The chain rule in ordinary calculus allows us to compute

df(t , x(t)) = ft(t , x(t))dt + ∇f(t , x(t)).dx(t)

We replace x(t) by a Brownian path, say in one dimension to keep things simple
and for f take the simplest nonlinear function f(x) = x2 that is independent of
t. We are looking for a formula of the type

β2(t) − β2(0) = 2

∫ t

0

β(s) dβ(s) (2.9)

We have already defined integrals of the form
∫ t

0

β(s) dβ(s) (2.10)

as Ito’s stochastic integrals. But still a formula of the type (2.9) cannot possibly
hold. The left hand side has expectation t while the right hand side as a stochas-
tic integral with respect to β(·) is mean zero. For Ito’s theory it was important
to evaluate β(s) at the back end of the interval [tj−1 , tj ] before multiplying by
the increment (β(tj) − β(tj−1) to keeep things progressively measurable. That
meant the stochastic integral (2.10) was approximated by the sums

∑

j

β(tj−1)(β(tj) − β(tj−1)

over successive partitions of [0 , t]. We could have approximated by sums of the
form ∑

j

β(tj)(β(tj) − β(tj−1).

In ordinary calculus, because β(·) would be a continuous function of bounded
variation in t, the difference would be negligible as the partitions became finer
leading to the same answer. But in Ito calculus the differnce does not go to 0.
The difference Dπ is given by

Dπ =
∑

j

β(tj)(β(tj) − β(tj−1) −
∑

j

β(tj−1(β(tj) − β(tj−1)

=
∑

j

(β(tj) − β(tj−1)(β(tj) − β(tj−1)

=
∑

j

(β(tj) − β(tj−1)
2

An easy computation gives E[Dπ] = t and E[(Dπ − t)2] = 3
∑

j(tj − tj−1)
2

tends to 0 as the partition is refined. On the other hand if we are neutral and
approximate the integral (2.10) by

∑

j

1

2
(β(tj−1) + β(tj))(β(tj) − β(tj−1)
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then we can simplify and calculate the limit as

lim
∑

j

β(tj)
2 − β(tj−1)

2

2
=

1

2
(β2(t) − β2(0))

This means as we defined it (2.10) can be calculated as
∫ t

0

β(s) dβ(s) =
1

2
(β2(t) − β2(0)) − t

2

or the correct version of (2.9) is

β2(t) − β2(0) =

∫ t

0

β(s) dβ(s) + t

Now we can attempt to calculate f(β(t))−f(β(0)) for a smooth function of one
variable. Roughly speaking, by a two term Taylor expansion

f(β(t)) − f(β(0)) =
∑

j

[f(β(tj)) − f(β(tj−1))]

=
∑

j

f ′(β(tj−1)(β(tj)) − β(tj−1))

+
1

2

∑

j

f ′′(β(tj−1)(β(tj)) − β(tj−1))
2

+
∑

j

O|β(tj)) − β(tj−1)|3

The expected value of the error term is approximately

E
[∑

j

O|β(tj)) − β(tj−1)|3
]

=
∑

j

O|tj − tj−1|
3
2 = o(1)

leading to Ito’s formula

f(β(t)) − f(β(0)) =

∫ t

0

f ′(β(s))dβ(s) +
1

2

∫ t

0

f ′′(β(s))ds (2.11)

It takes some effort to see that

∑

j

f ′′(β(tj−1)(β(tj)) − β(tj−1))
2 →

∫ t

0

f ′′(β(s))ds

But the idea is, that because f ′′(β(s)) is continuous in t, we can pretend that it
is locally constant and use that calculation we did for x2 where f ′′ is a constant.

While we can make a proof after a careful estimation of all the errors, in fact
we do not have to do it. After all we have already defined the stochastic integral
(2.10). We should be able to verify (2.11) by computing the mean square of the
difference and showing that it is 0.

In fact we will do it very generally with out much effort. We have the tools
already.
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Theorem 2.4. Let x(t) be an almost surely continuous process with values on
Rd such that

yi(t) = xi(t) − xi(0) −
∫ t

0

bi(s, ω)ds (2.12)

and

yi(t)yj(t) −
∫ t

0

ai,j(s, ω)ds (2.13)

are martingales for 1 ≤ i, j ≤ d. For any smooth function u(t , x) on [0 ,∞)×Rd

u(t , x(t)) − u(0 , x(0)) =

∫ s

0

us(s , x(s))ds +

∫ t

0

< (∇u)(s , x(s)) , dx(s) >

+
1

2

∫ t

0

∑

i,j

ai,j(s , ω)
∂2u

∂xi∂xj

(s , x(s))ds

Proof. Let us define the stochastic process

ξ(t) =u(t , x(t)) − u(0 , x(0)) −
∫ s

0

us(s , x(s))ds

−
∫ t

0

< (∇u)(s , x(s)) , dx(s) > −1

2

∫ t

0

∑

i,j

ai,j(s , ω)
∂2u

∂xi∂xj

(s , x(s))ds

(2.14)

We define a d + 1 dimensional process x̃(t) = {u(t , x(t)), x(t)} which is again
a process with almost surely continuous paths satisfying relations analogous to
(2.12) and (2.13) with [b̃, ã]. If we number the extra coordinate by 0, then

b̃i =

{
[∂u
∂s

+ Ls,ωu](s , x(s)) if i = 0

bi(s , ω) if i ≥ 1

ãi,j =






< a(s , ω)∇u ,∇u > if i = j = 0

[a(s , ω)∇u]i if j = 0, i ≥ 1

ai,j(s , ω) if i, j ≥ 1

The actual computation is interesting and reveals the connection between
ordinary calculus, second order operators and Ito calculus. If we want to know
the parametrs of the process y(t), then we need to know what to subtract from
v(t , y(t))−v(0 , y(0)) to obtain a martingale. But v(t, , y(t)) = w(t , x(t)), where
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w(t, x) = v(t , u(t , x) , x) and if we compute

(
∂w

∂t
+ Ls,ωw)(t , x) = vt + vu[ut +

∑

i

biuxi
+

∑

i

bivxi
+

1

2

∑

i,j

ai,juxi,xj
]

+ vu,u

1

2

∑

i,j

ai,juxi
uxj

+
∑

i

vu,xi

∑

j

ai,juxj

+
1

2

∑

i,j

ai,jvxi,xj

= vt + L̃t,ωv

with

L̃t,ωv =
∑

i≥0

b̃i(s , ω)vyi
+

1

2

∑

i,j≥0

ãi,j(s , ω)vyi,yj

We can construct stochastic integrals with respect to the d + 1 dimensional
process y(·) and ξ(t) defined by (2.14) is again an almost surely continuous
process and its parameters can be calculated. After all

ξ(t) =

∫ t

0

< f(s , ω) , dy(s) > +

∫ t

0

g(s , ω)ds

with

fi(s , ω) =

{
1 if i = 0

−(∇u)i(s , x(s)) if i ≥ 1

and

g(s , ω) = −
[∂u
∂s

+
1

2

∑

i,j

ai,j(s , ω)
∂2u

∂xi∂xj

]
(s , x(s))

Denoting the parameters of ξ(·) by [B(s , ω), A(s , ω)], we find

A(s , ω) =< f(s , ω) , ã(s , ω)f(s , ω) >

=< a∇u ,∇u > −2 < a∇u ,∇u > + < a∇u ,∇u >
= 0

and

B(s , ω) =< b̃ , f > +g = b̃0(s , ω)− < b(s , ω) ,∇u(s , x(s)) >

−
[∂u
∂s

(s , ω) +
1

2

∑

i,j

ai,j(s , ω)
∂2u

∂xi∂xj

(s , x(s))
]

= 0

Now all we are left with is the following

Lemma 2.5. If ξ(t) is a scalar process corresponding to the coefficients [0, 0]
then

ξ(t) − ξ(0) ≡ 0 a.e.
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Proof. Just compute

E[(ξ(t) − ξ(0))2] = E[

∫ t

0

0 ds] = 0

This concludes the proof of the theorem.

Exercise 2.7. Ito’s formula is a local formula that is valid for almost all paths. If
u is a smooth function i.e. with one continuous t derivative and two continuous
x derivatives (2.11) must still be valid a.e. We cannot do it with moments,
because for moments to exist we need control on growth at infinity. But it
should not matter. Should it?

Application: Local time in one dimension. Tanaka Formula.

If β(t) is the one dimensional Brownian Motion, for any path β(·) and any t,
the occupation meausre Lt(A ,ω) is defined by

Lt(A,ω) = m{s : 0 ≤ s ≤ t & β(s) ∈ A}

Theorem 2.6. There exists a function ℓ(t , y, ω) such that, for almost all ω,

Lt(A,ω) =

∫

A

ℓ(t , y , ω) dy

identically in t.

Proof. Formally

ℓ(t , y , ω) =

∫ t

0

δ(β(s) − y)ds

but, we have to make sense out of it. From Ito’s formula

f(β(t)) − f(β(0)) =

∫ t

0

f ′(β(s)) dβ(s) +
1

2

∫ t

0

f ′′(β(s))ds

If we take f(x) = |x − y| then f ′(x) = sign x and 1
2f

′′(x) = δ(x − y). We get
the ‘identity’

|β(t) − y| − |β(0) − y| −
∫ t

0

sign β(s)dβ(s) =

∫ t

0

δ(β(s) − y)ds = ℓ(t , y , ω)

While we have not proved the identity, we can use it to define ℓ(· , · , ·). It is
now well defined as a continuous function of t for almost all ω for each y, and
by Fubini’s theorem for almost all y and ω.



2.4. ITO’S FORMULA. 29

Now all we need to do is to check that it works. It is enough to check that
for any smooth test function φ with compact support

∫

R

φ(y)ℓ(t , y , ω) dy =

∫ t

0

φ(β(s))ds (2.15)

The function

ψ(x) =

∫

R

|x− y|φ(y) dy

is smooth and a straigt forward calculation shows

ψ′(x) =

∫

R

sign (x− y)φ(y) dy

and
ψ′′(x) = −2φ(x)

It is easy to see that (2.15) is nothing but Ito’s formuls for ψ.

Remark 2.2. One can estimate

E
[ ∫ t

0

[ sign (β(s) − y) − sign (β(s) − z)]dβ(s)
]4 ≤ C|y − z|2

and by Garsia- Rodemich- Rumsey or Kolmogorov one can conclude that for
each t, ℓ(t , y , ω) is almost surely a continuous function of y.

Remark 2.3. With a little more work one can get it to be jointly continuous in
t and y for almost all ω.
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Chapter 3

Stochastic Differential

Equations.

3.1 Existence and Uniqueness.

One of the ways of constructing a Diffusion process is to solve the stochastic
differential equation

dx(t) = σ(t, x(t)) · dβ(t) + b(t, x(t))dt ; x(0) = x0 (3.1)

where x0 ∈ Rd is either nonrandom or measurable with respect to F0. This is
of course written as a stochastic integral equation

x(t) = x(0) +

∫ t

0

σ(s, x(s)) · dβ(s) +

∫ t

0

b(s, x(s))ds (3.2)

If σ(s, x) and b(s, x) satisfy the following conditions

|σ(s, x)| ≤ C(1 + |x|) ; |b(s, x)| ≤ C(1 + |x|) (3.3)

|σ(s, x) − σ(s, y)| ≤ C|x − y| ; |b(s, x) − b(s, y)| ≤ C|x− y| (3.4)

by a Picard type iteration scheme one can prove existence and uniqueness.

Theorem 3.1. Given σ, b that satisfy (3.3) and (3.4), for given x0 which is
F0 measurable, there is a unique solution x(t) of (3.2), with in the class of
progressively measurable almost surely continuous solutions.

Proof. Define iteratively

x0(t) ≡ x0

xn(t) = x0 +

∫ t

0

σ(s, xn−1(s)) · dβ(s) +

∫ t

0

b(s, xn−1(s))ds (3.5)

31
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If we denote the difference xn(t) − xn−1(t) by zn(t), then

zn+1(t) =

∫ t

0

[σ(s, xn(s)) − σ(s, xn−1(s))] · dβ(s)

+

∫ t

0

[b(s, xn(s)) − b(s, xn−1(s))]ds

If we limit ourselves to a finite interval 0 ≤ t ≤ T , then

E
[∣∣

∫ t

0

[σ(s, xn(s)) − σ(s, xn−1(s))] · dβ(s)
∣∣2] ≤ CE

[ ∫ t

0

|zn(s)|2ds
]

and

E
[∣∣

∫ t

0

[b(s, xn(s)) − b(s, xn−1(s))]ds
∣∣2] ≤ CTE

[ ∫ t

0

|zn(s)|2ds
]

Therefore

E
[
|zn+1(t)|2

]
≤ CTE

[ ∫ t

0

|zn(s)|2ds
]

With the help of Doob’s inequality one can get

∆n+1(t) = E
[

sup
0≤s≤t

|zn+1(s)|2
]
≤ CTE

[ ∫ t

0

|zn(t)|2dt
]
≤ CT

∫ t

0

∆n(s)ds

By induction this yields

∆n(t) ≤ A
Cn

T t
n

n!

which is sufficient to prove the existence of an almost sure uniform limit x(t) of
xn(t) on bounded intervals [0, T ]. The limit x(t) is clearly a solution of (3.2).
Uniqueness is essentially the same proof. For the difference z(t) of two solutions
one quickly establishes

E
[
|z(t)|2

]
≤ CTE

[ ∫ t

0

|z(s)|2ds
]

which suffices to prove that z(t) = 0.

Once we have uniqueness one should thing of x(t) as a map of x0 and the
Brownian increments dβ in the interval [0, t]. In particular x(t) is a map of x(s)
and the Brownian increments over the interval [s, t]. Since x(s) is Fs measurable,
we can conclude that x(t) is a Markov process with transition probability

p(s, x, t, A) = P [x(t; s, x) ∈ A]

where x(t; s, x) is the solution of (3.2) for t ≥ s, initialised to start with x(s) = x.
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It is easy to see, by an application of Itô’s lemma that

M(t) =u(t, x(t)) − u(s, x(s)) −
∫ t

s

[∂u
∂s

(s, x(s))

+
1

2

∑

i,j

ai,j(s, x(s))
∂2u

∂xi∂xj

(s, x(s)) +
∑

i

bi(s, x(s))
∂u

∂xi

(s, x(s))
]
ds

is a martingale, where a = σσ∗, i.e.

ai,j(s, x) =
∑

k

σi,k(s, x)σk,j(s, x)

The process x(t) is then clearly the Diffusion process associated with

Ls =
1

2

∑

i,j

ai,j(s, x)
∂2

∂xi∂xj

+
∑

i

bi(s, x)
∂

∂xi

Remark 3.1. We might consider equations of the form

dx(t) = σ(t, ω, x(t)) · dβ(t) + b(t, ω, x(t))dt

where σ(t, ω, x) and b(t, ω, x) are progressively measurable, bounded (or have
linear growth in x) and satisfy a Lipschitz condition in x. There will be a unique
solution. But, in general, it will not be Markov if σ and b depend on ω.

3.2 Smooth dependence on parameters.

If σ and b depend smoothly on an additional parameter θ then we will show
that the solution x(t) = x(t, θ, ω) will depend smoothly on the parameter. The
idea is to start with the solution

x(t, θ, ω) = x0(θ, ω) +

∫ t

0

σ(s, x(s, θ), θ) · dβ(s) +

∫ t

0

b(s, x(s, θ), θ)ds

Differentiating with respect to θ, and denoting by Y the derivative, we get

Y (t, θ) = y0(θ) +

∫ t

0

[
σx(s, x(s, θ), θ)Y (s, θ) + σθ(s, x(s, θ), θ)

]
· dβ(s)

+

∫ t

0

[
bx(s, x(s, θ), θ)Y (s, θ) + bθ(s, x(s, θ), θ)

]
ds

We look at (x, Y ) as an enlarged system satisfying

dx =σ · dβ + bdt

dY =[σxY + σθ] · dβ + [bxY + bθ]dt
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We can repeat this process with higher order derivatives. Denoting by Y (n) the
mixed derivatives of order n of x(t, θ, ω) with respect to θ, we obtain equations
of the form

dY (n)(t, θ, ω) = σxY
(n) · dβ(t) + bxY

(n) · dt+ c(n)(t, θ, ω) · dβ(t) + d(n)(t, θ, ω)dt
(3.6)

where c(n) and d(n) are polynomials in Y (j) with j ≤ n − 1 with coefficients
that are functions of t, θ, ω that have finite moments of all orders. Because σx

and bx are bounded, we can prove the existence of the solution Y (n)(t) to the
linear SDE, with moment estimates. We can in fact go through the iteration
scheme in such a manner that the approximations to Y (n) are the derivatives
with respect to θ of the corresponding approximation of x(t, θ, ω). The limits
Y (n) can be shown to be the derivatives ∇n

θx(t, θ, ω). We therefore arrive at the
following Theorem.

Theorem 3.2. Let σ(t, x, θ), b(t, x, θ) and x0(θ, ω) satisfy

E[‖∇n
θx0(θ, ω)‖p] ≤ Cn,p

‖∇n
θσ‖ ≤ Cn, ‖∇n

θ b‖ ≤ Cn;

‖σ(t, x, θ) − σ(t, y, θ)‖ ≤ C‖x− y‖
‖b(t, x, θ) − b(t, y, θ)‖ ≤ C‖x− y‖

Then the solution x(t, ω, θ) of

x(t, ω, θ) = x0(θ, ω) +

∫ t

0

σ(t, x(s, ω), θ) · dβ(s) =

∫ t

0

b(t, x(s, ω), θ) · ds

has derivatives in Lp of all orders with respect to θ and Y (n)(t) = ∇n
θx(t, ω, θ)

has moments of all orders and satisfies the SDE (3.6).

Corollary 3.3. If x(t) is viewed as a function of the starting point x, then one
can view x as the parameter and conclude that if the coefficients have bounded
derivatives of all orders then the solution x(t) is almost surely an infinitely
differentiable function of its starting point.

Proof. One needs to observe that if a stochastic process ξ(x, ω) onRd has deriva-
tives in Lp of all orders for some p > 1, then it is in fact C∞ in the classical
sense for almost all ω. This is a consequence of Sobolev’s lemma and Fubini’s
theorem.

Remark 3.2. Since smoothness is a local property, if σ and b have at most
linear growth, the solution exists for all time with out explosion, and then one
can modify the coefficients outside a bounded domain with out changing much.
This implies that with out uniform bounds on derivatives the solutions x(t) will
still depend smoothly on the initial point, but the derivatives may not have
moment estimates.

Remark 3.3. This means one can view the solution u(t, x) of the equation

du(t, x) = σ(u(t, x)) · dβ + b(u(t, x))dt; u(0, x) = x

as random flow u(t) : Rd → Rd. The flow as we saw is almost surely smooth.
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3.3 Itô and Stratonovich Integrals.

In the definition of the stochastic integral

η(t) =

∫ t

0

f(s)dx(s)

we approximated it by sums of the form
∑

j

f(tj−1)[x(tj) − x(tj−1)]

always sticking the increments in the future. This allowed the integrands to be
more or less arbitrary, so long as it was measurable with respect to the past.
This meshed well with the theory of martingales and made estimation easier.
Another alternative, symmetric with respect to past and future, is to use the
approximation

∑

j

[f(tj−1) + f(tj)]

2
[x(tj) − x(tj−1)]

It is not clear when this limit exists. When it exists it is called the Stratonovich
integral and is denoted by

∫
f(s)◦dx(s). If f(s) = f(s, x(s)), then the difference

between the two integrals can be explicitly calculated.

∫ t

0

f(s, x(s)) ◦ dx(s) =

∫ t

0

f(s, x(s)) · dx(s) +
1

2

∫ t

0

a(s)ds

where
∫ t

0

a(s)ds = lim
∑

j

[f(tj , x(tj)) − f(tj−1, x(tj−1))][x(tj) − x(tj−1)]

If x(t) is just Brownian motion inRd, then a(s) = (∇·f)(s, x(s)). More generally
if

lim
∑

j

[xi(tj) − xi(tj−1)][xk(tj) − xk(tj−1)] =

∫ t

0

ai,k(s)ds

then
a(s) =

∑

i,k

fi,k(s, x(s))ai,k(s) = Tr[(Df)(s, x(s))a(s)]

Solutions of
dx(t) = σ(t, x(t)) · dβ(t) + b(t, x(t))dt

can be recast as solutions of

dx(t) = σ(t, x(t)) ◦ dβ(t) + b̃(t, x(t))dt

with b and b̃ related by

bi(t, x) = b̃i(t, x) +
1

2

∑
σj,k(t, x)

∂

∂xj

σi,k(t, x)



36 CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS.

To see the relevance of this, one can try to solve

dx(t) = σ(t, x(t)) · dβj(t) + b(t, x(t))dt

by approximating β(t) by a piecewise linear approximation β(n)(t) with deriva-
tive f (n)(t). Then we will have just ODE’s

dx(n)(t)

dt
= σ(t, x(n)(t))f (n)(t) + b(t, x(n)(t))

where f (n)(·) are piecewise constant. An elementary calculation shows that over
an interval of constancy [t, t+ h],

x
(n)
i (t+ h) = x

(n)
i (t) + σ(t, x(n)(t)) · Zh + bi(t, x

(n)(t))h

+
1

2
< Zh, ci(t, x

(n)(t))Zh > +o((Zh)2)

where

ci(t, x) =
∑

σj,k(t, x)
∂

∂xj

σi,k(t, x)

and Zh is a Gaussian with mean 0 and variance hI while

β(n)(t+ h) = βn(t) + Zh

It is not hard to see that the limit of x(n)(·) exists and the limit solves

dx(t) = σ(t, x(t)) · dβ(t) + b(t, x(t))dt +
1

2
c(t, x(t))dt

or
dx(t) = σ(t, x(t)) ◦ dβ(t) + b(t, x(t))dt

It is convenient to consider a vector field

X =
∑

i

σi(x)
∂

∂xj

and its square

X2 =
∑

i,j

σi(x)σj(x)
∂2

∂xi∂xj

+
∑

j

cj(x)
∂

∂xj

where

cj(x) =
∑

i

σi(x)
∂σj(x)

∂xi

Then the solution of

dx(t) = σ(t, x(t)) ◦ dβ(t) + b(t, x(t))dt =
∑

Xi(t, x(t)) ◦ dβi(t) + Y (t, x(t))dt
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is a Diffusion with generator

Lt =
1

2

∑
Xi(t)

2 + Y (t)

When we change variables the vector fields change like ordinary first order cal-
culus and

L̂t =
1

2

∑
X̂i(t)

2 + Ŷ (t)

and the Stratonovich solution

dx(t) = σ(t, x(t)) ◦ dβ(t) + b(t, x(t))dt

transforms like

dF (x(t)) = DF · dx(t) = (DF )(x(t))[σ(t, x(t)) ◦ dβ(t) + b(t, x(t))dt]

The Itô corrections are made up by the difference between the two integrals.

Remark 3.4. Following up on remark (3.2), for each t > 0, the solution actually
maps Rd → Rd as a diffeomorphism. To see this it is best to view this through
Stratonovich equations. Take t = 1. If the forward flow is therough vector fileds
Xi(t), Y (t), the reverse flow is through −Xi(1−t), Y (1−t) and the reversed noise

is β̂(t) = β(1) − β(1 − t). One can see by the piecewise linear approximations
that these are actually inverses of each other.


