Let $\sigma(s)$ and $b(s)$ be "smooth" progressively measurable functions of ω. Then so are

$$
x(t)=\int_{0}^{t} \sigma(s) d \beta_{k}(s)
$$

and

$$
y(t)=\int_{0}^{t} b(s) d s
$$

In fact

$$
\mathcal{L} x(t)=\int_{0}^{t}[\mathcal{L} \sigma(s)-\sigma(s)] d \beta(s)
$$

and

$$
\mathcal{L} y(t)=\int_{0}^{t} \mathcal{L} b(s) d s
$$

It is easily proved by approximating the integrals by a sum. One notes that

$$
\mathcal{L} \sigma(s)[\beta(t)-\beta(s)]=[\mathcal{L} \sigma(s)][\beta(t)-\beta(s)]+\sigma(s) \mathcal{L}[\beta(t)-\beta(s)]
$$

due to the independence of $\sigma(s)$ and $[\beta(t)-\beta(s)]$ and $\mathcal{L} \beta(t)=-\beta(t)$. If we do the Picard iteration

$$
x_{i}^{n}(t)=x_{i}+\int_{0}^{t} \sum_{k} \sigma_{i k}\left(s, x^{n-1}(s)\right) d \beta_{k}(s)+\int_{0}^{t} b_{i}\left(s, x^{n-1}(s)\right) d s
$$

then denoting by $\mathcal{L} x_{i}^{n}$ by X_{i}^{n}

$$
\begin{aligned}
X_{i}^{n}(t)= & \int_{0}^{t} \sum_{k}<\left(\nabla_{x} \sigma_{i k}\right)\left(s, x_{i}^{n-1}(s)\right), X^{n-1}(s)>d \beta_{k}(s) \\
& +\int_{0}^{t}<\left(\nabla_{x} b_{i}\right)\left(s, x_{i}^{n-1}(s)\right), X^{n-1}(s)>d s \\
& +\int_{0}^{t} \sum_{k}<\nabla_{x}^{2} \sigma_{i k}\left(s, x_{i}^{n-1}(s)\right), A^{n-1}(s)>d \beta_{k}(s) \\
& +\int_{0}^{t}<\nabla_{x}^{2} b_{i}\left(s, x_{i}^{n-1}(s)\right), A^{n-1}(s)>d s
\end{aligned}
$$

where

$$
A_{i j}^{n}(s)=<D x_{i}^{n}(s), D x_{j}^{n}(s)>
$$

If we calculate the derivative of $x_{i}^{n}(t)$ in some direction $h=\left\{h_{k}\right\}$ and denote the derivative by $D_{h} x_{i}^{n}(t)$ by $y_{i}^{n}(t)$, then

$$
\begin{aligned}
y_{i}^{n}(t)= & \int_{0}^{t} \sum_{k}<\left(\nabla_{x} \sigma_{i k}\right)\left(s, x_{i}^{n-1}(s)\right), y^{n-1}(s)>d \beta_{k}(s) \\
& +\int_{0}^{t}<\left(\nabla_{x} b_{i}\right)\left(s, x_{i}^{n-1}(s)\right), y^{n-1}(s)>d s \\
& +\int_{0}^{t} \sum_{k} \sigma_{i k}\left(s, x_{i}^{n-1}(s)\right) h_{k}(s) d s
\end{aligned}
$$

We came across the equation

$$
\begin{aligned}
y_{i}^{n}(t)= & \int_{0}^{t} \sum_{k}<\left(\nabla_{x} \sigma_{i k}\right)\left(s, x_{i}^{n-1}(s)\right), y^{n-1}(s)>d \beta_{k}(s) \\
& +\int_{0}^{t}<\left(\nabla_{x} b_{i}\right)\left(s, x_{i}^{n-1}(s)\right), y^{n-1}(s)>d s
\end{aligned}
$$

while considering the solution of the SDE as a flow and the solution with $y(0)=y$ represented the Jacobian of the flow. $x(0) \rightarrow x^{n}(t)$. The Jacobian is of course just a matrix and is given by $M_{i j}^{n}(t, 0)$. It is clear that the limit as $n \rightarrow \infty$ exists and is the gradient at time t of the solution of the SDE viewed as a flow. More generally we can start at time $s<t$ and $M(t, s)=\left\{M_{i j}(t, s)\right\}$ is the Jacobian and satisfies.

$$
M\left(t_{3}, t_{1}\right)=M\left(t_{3}, t_{2}\right) M\left(t_{2}, t_{1}\right)
$$

for $t_{1} \leq t_{2} \leq t_{3}$. By variation of parameters we can calculate in our case the limit of $y^{n}(t)$ exists and equals

$$
D_{h} x(t)=y(t)=\int_{0}^{t} M(t, s) \sigma(s, x(s)) h(s) d s
$$

In other words $[D x(t)](s)=M(t, s) \sigma(s, x(s)) \mathbf{1}_{s \leq t}$. The Malliavin covariance $A(t)=$ $\left\{A_{i j}(t)\right\}$ is given by

$$
A(t)=\int_{0}^{t} M(t, s) a(s, x(s)) M^{*}(t, s) d s
$$

with $a=\sigma \sigma^{*}$. We see now that the solution $x(t)$ is "smooth".
In the elliptic case, $a \geq c I$.

$$
A(t) \geq c t \inf _{\substack{0 \leq s \leq t \\\|x\|=1}}\|M(t, s) x\|^{2}
$$

We had estimates on the inverse of $M(s, t)$ while proving that the flow was a diffeomorphism. Hence elliptic equations have a nice fundamental solution.

