
Let σ(s) and b(s) be ”smooth” progressively measurable functions of ω. Then so are

x(t) =

∫ t

0

σ(s)dβk(s)

and

y(t) =

∫ t

0

b(s)ds

In fact

Lx(t) =

∫ t

0

[Lσ(s)− σ(s)]dβ(s)

and

Ly(t) =

∫ t

0

Lb(s)ds

It is easily proved by approximating the integrals by a sum. One notes that

Lσ(s)[β(t)− β(s)] = [Lσ(s)][β(t)− β(s)] + σ(s)L[β(t)− β(s)]

due to the independence of σ(s) and [β(t)− β(s)] and Lβ(t) = −β(t). If we do the Picard
iteration

xn
i (t) = xi +

∫ t

0

∑
k

σik(s, xn−1(s))dβk(s) +

∫ t

0

bi(s, x
n−1(s))ds

then denoting by Lxn
i by Xn

i

Xn
i (t) =

∫ t

0

∑
k

< (∇xσik)(s, xn−1

i (s)), Xn−1(s) > dβk(s)

+

∫ t

0

< (∇xbi)(s, x
n−1

i (s)), Xn−1(s) > ds

+

∫ t

0

∑
k

< ∇2

xσik(s, xn−1

i (s)), An−1(s) > dβk(s)

+

∫ t

0

< ∇2

xbi(s, x
n−1

i (s)), An−1(s) > ds

where
An

ij(s) =< Dxn
i (s), Dxn

j (s) >

If we calculate the derivative of xn
i (t) in some direction h = {hk} and denote the derivative

by Dhxn
i (t) by yn

i (t), then

yn
i (t) =

∫ t

0

∑
k

< (∇xσik)(s, xn−1

i (s)), yn−1(s) > dβk(s)

+

∫ t

0

< (∇xbi)(s, x
n−1

i (s)), yn−1(s) > ds

+

∫ t

0

∑
k

σik(s, xn−1

i (s))hk(s)ds
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We came across the equation

yn
i (t) =

∫ t

0

∑
k

< (∇xσik)(s, xn−1

i (s)), yn−1(s) > dβk(s)

+

∫ t

0

< (∇xbi)(s, x
n−1

i (s)), yn−1(s) > ds

while considering the solution of the SDE as a flow and the solution with y(0) = y repre-
sented the Jacobian of the flow. x(0) → xn(t). The Jacobian is of course just a matrix
and is given by Mn

ij(t, 0). It is clear that the limit as n → ∞ exists and is the gradient at
time t of the solution of the SDE viewed as a flow. More generally we can start at time
s < t and M(t, s) = {Mij(t, s)} is the Jacobian and satisfies.

M(t3, t1) = M(t3, t2)M(t2, t1)

for t1 ≤ t2 ≤ t3. By variation of parameters we can calculate in our case the limit of yn(t)
exists and equals

Dhx(t) = y(t) =

∫ t

0

M(t, s)σ(s, x(s))h(s)ds

In other words [Dx(t)](s) = M(t, s)σ(s, x(s))1s≤t. The Malliavin covariance A(t) =
{Aij(t)} is given by

A(t) =

∫ t

0

M(t, s)a(s, x(s))M∗(t, s)ds

with a = σσ∗. We see now that the solution x(t) is ”smooth”.

In the elliptic case, a ≥ cI.

A(t) ≥ ct inf
0≤s≤t

‖x‖=1

‖M(t, s)x‖2

We had estimates on the inverse of M(s, t) while proving that the flow was a diffeomor-
phism. Hence elliptic equations have a nice fundamental solution.
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