Lecture 1.

One of the problems in describing and studying properties of special classes of stochastic
processes is to find a convenient way of parametrizing them. The general way of describing
stochastic processes by a consistent family of finite dimensional distributions, satisfying
suitable additional conditions to provided regularity of sample paths is useful only in
special cases. The finite dimensional distributions have to be provided. The Gaussian
ones are natural and a Gaussian process can be specified by its mean and covariance. The
only other large class is diffusion processes for which the finite dimensional distributions
can be specified in terms of fundamental solutions of certain parabolic partial differential
equations.

A convenient way of describing a discrete time stochastic process is through succesive
conditional distributions, i.e. {P,(dz,|xo,x1,...,Zn—1)}. This has the advantage that if
the index set is really time, this decribes a model for the evolution of the process.

The continuos time analog of this is not so obvious. In the deterministic case a con-
tinuos evolution can be described in the simplest case by an ordinary differential equation,
the discrete anlog of which is a recurrence relation. If one thinks of the ODE & = b(x)
as describing a an approximate recurrence of the form x(t + h) ~ x(t) + hb(x(t)), then in
the stochastic case we are looking for an approximate way of normalizing the conditional
distribution g p o, (A) = Plz(t + h) — 2(t) € Alz(s) : 0 < s < t]. If one thinks of the ODE
as describing a vector filed that is tangent to the curve, then one has to define some sort
of tangent to a stochastic process. Since the tangent is a blowup of a small difference we
need to blow up the samll distribution ji; . This is done by convoluting it with itself
[%] times. Note that in the deterministic case this is essentially the same as dividing by
h or adding it to itself [+] times. In the limit the high convolution, if it has a limit will
converge to an infinitely divisible distribution D; ,, which can be called the tangent.

Example 1. If z(¢) is Brownian motion, then py, ¢ is Gaussian with mean 0 and vaiance
h and the limiting tangent is the normal distribution with zero mean and variance one.
It is constant, i.e. it is independent of ¢ and w. Processes with constant tangent are
like staright lines and are in fact processes with homogeneous independent increments.
Another example is the Posson process N(t) for which the tangent is of course the Poisson
distribution.

Example 2: Markov processes have conditionals ¢, that depend on w only through
z(t) = x(t,w) and there is a map (t,z) — Dy , that defines the tangent. D, , is an infinitely
divisible distribution. Homogeneous transition probabilities correspond to D;, = D,
depending only on .

Example 3: Continuous sample paths correspond to pp ¢ u[|x| > €] = o(h). This is of
course the same as the Lindeberg condition that is needed for the limit to be Gaussian. In
other words Dy ,, being Gaussian corresponds to continuos paths.

Example 4: Finally, if the process is Markov and has continuos paths then D, is
Gaussian with mean b(t,z(t)) and variance a(t,x(t)). It is defined in terms of the two
functions, a(t,z) and b(t,z). Homogeneous case corresponds to functions that depend
only on .



Example 5: The Gaussian processes are characterized by linear regression and nonrandom
conditional variance. In this case the Gaussian measure D, ,, with mean b(¢,w) which is a
linear functional of the path z(s) : 0 < s <t and variance a(t) which is purely a function
of t. If b(t,w) = b1(t) + ba(t)x(t) then we should have a Gauss Markov processes.

The question now is how to describe in mathematically precise terms the relationship
between the process P and its tangent D;,. Let us look at Brownian motion as an
example.
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Equivalently
expl0fe(t) — 2(0) — 2]

is a martingale w.r.t P and the natural filtration F; = o{x(s) : 0 < s < t}. The converse
that the only process P with respect to which the martingale property is valid for all 8 € R
is Brownian motion is not hard to prove. From the martingale relation it follows that
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EP [expl0lz(t) — 2(s)]|Fs] = e

which implies that z(¢) — z(s) is conditionally independent of F; and has a Gaussian
distribution with mean zero and variance t — h. This makes it Brownian motion.

Lecture 2.

We will now discuss processes with independent increments. We are familiar with Brownian
motion whose increments over intervals of lenth 7 are normally distributed with mean 0 and
variance 7. More generally the distribution of the increments of a procees with independent
increments over an interval of length 7 will be a family p. of probability distributions such
that p,*pus = pr4s where * denotes convolution. Such distributions are of course infinitely
divisible and possess the Levy-Khintchine representation for their charecteristic function.

21 €)= [ nnlan) —exp | rlias - T2 4 [0 1o L qaray)

Here M (dy) is a sigma-finite mesure supported on R\0, which can be infinite only near 0.
In other words My : |y| > 0] < oo for any § > 0. More over M cannot be too singular
near 0. It must integrate y>.

/ y> M (dy) < oo
lyl<1

This allows the expression in the exponent of equation (2.1) to be well defined. It is not
hard to see that if we add two processes with indpendent increments which are themselves
independent of each other the sum is again a process with independent increments. Since
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the characteristic function of an indpendent sum is the product of the charecteristic func-
tions, the Levy-Khintchine representation of the new process, which is the sum of the two
original processes is easily obtained by adding the exponents in (2.1). In partcular we can
try to understand the process that goes with p, by breaking up the exponent into pieces.

If 7. (£) = €'7%¢ then the process is deterministic with x(¢) = at with probability 1. It is a
straightline with slope a. The slope is often called the ”drift”. But it does not necessaily
imply that in general E[z(t)] = at.

If
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Hr (5) =€ 2
then process z(t) is seen to be Brownian motion with variance o?t. It can be represented
as o(3(t) in terms of the canonical Brownian motion with variance 1.

Before we turn to the final component that involves M let us look at the canonical Poisson
process N(t). This is a process with independent increments such that the distribution
of N(t) — N(s) is Poisson with parameter ¢ — s. Since the increments are all nonnegative
integers, this is a process N(t) which increases by jumps that are integers. In fact the
jumps are always of size 1. This is not so obvious and needs a calculation. Let us split the
interval [0, 1] into n intervals of length % and ask what is the probability that at leat one
increment is atleat k. This can be evaluated as
11,1 1
1—| Z e ”[E]]ﬁ]nﬁl—(l—mw—w
0<j<k—-1

if & > 2. This implies that the jumps are all of size 1. The times between jumps are
all independent and have exponential distributions. One can then visualize the Poisson
process as waiting for indpendent events with exponential distributions and counting the
number of events upto time ¢. Therefore
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One can make the Poisson process more complex by building on top of it. Let us keep a
sequence of i.i.d.random variables X1, Xs,..., X,,... ready and define

X(t)=X1+Xo+ -+ Xy

so that instead of just counting each time the event occurs we add and indpendent X to
the sum. We then get the sum of a random number of indpendent random variables. The
characteristic function of X (t) is easy to compute.

oo e~ T k
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This is easily seen to lead to a Levy-Khintchine formula with exponent

expl [ (€1 = Vda(y)

where « is the distribution of X;. While slightly diffrerent from the earlier form it can be
put in that form by writing it as

expli¢ [ 1L sdalw)+ [0 = 1= 1 )daly)

One should think of the Levy-Khintchine form as the centered form where the centering
is not done by the expected value which will be by [yda(y). This may not in general
be defined. Instead the centering is done by a truncated mean [ #da(y). There is
nothin sacred about # One could have used any function 6(y) that looks sufficiently
like y near the origin and remains bounded near infinity. Notice that the Poisson process
N(t) that enters the definition of x(¢) can have intensity A different from 1, and nothing
significant would change except the final formula

fi€) = expleh [ (€0~ Dda(y)] = explt [ (€0~ Dad(y)
where now M is a measure with total mass A\. These are called compound Poisson processes.

We can always decompose the o-finite measure M as an infinite sum }_; M; of finite
measures. then for the process X (t) with characteristic function

(9 = el [0 —1- i)

we have a representation as the sum
X(t) =Y [X;(t) —a;1]
J

where X;(t) is the compound Poisson process with Levy measure M, and the constants
aj = [ #de(y) are centering constants that may be needed. Kolmogorov’s three

series theorem will guarantee that for the convergence of 3 ;[X;(t) — a;t] it is necessary
and sufficient

and



converge. Equivalently
2
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With out the centering the series may diverge and so it is not possible to separate the two
sums » . X;(t) and 3, a;t unless

1
/ plaM(y) < o

Remarks:. If we add several mutually independent processes with independent increments
their jumps cannot coincide. They just pile up at different times. Therefore for any process
with independent increments X (¢) the levy measure M has the interpretation that for any
set A not containing the origin the number of jumps N4 (t) in the interval [0,¢] that are
from the set A is a Poisson process with parameter M (A) and for disjoint sets {A,}, the
processes { N4 } are mutually independent. Except for the centering that may be needed
this gives a complete picture of Poisson type processes with independent increments. What
is left is a Process with independent increments with no jumps, which is of course Brownian
motion with some variance ot and drift at.

Generators and Semigroups. A process with independent increments is a one param-
eter semigroupp; of convolutions, i.e for t,s > 0, pus * s = pers. On the space C(R)
of bounded continuos function on R this defines a one parameter semi group of bounded
operators

(Tof) () = / F(@+ y)ue(dy)

that satisfy T35 = T3Ts. Their infinitesimal generator A is defined as

t—0 t

The general theory of semigroups of linear operator outlines how to recover T; from. Ba-

. EDY
sically Ty = et = > E ]f?

. let us look at this for the Poisson process.

N 2
(T2.f)(z) = Zf(w +J)e tﬁ
j
Simple differentiation gives

A(f) = fl@+1) = flx) =5F -1

the difference operator, where S is the shift by 1. Then
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giving us the Poisson semigroup. For the Brownian motion semigroup
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by a Taylor expansion of f, it is easy to see that for smooth f

1
(Af)() = 3 Foule)
and for the deterministic process X (t) = at

A (o) — tim L2 00 = 1(@)

t—0 t
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We can put all the pieces together and write for a general process with independent incre-
ments represented in its Levy-Khintchine formula by [a, o2, M|, the infinitesimal generator
is given by
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Among all process that commute with translations these operators are singled out because
of two properties. One, Al = 0, beacuse u; are probability measures and 731 = 1. Since
T, f is nonnegative when ever f is, at the global minimum z( of f(x), since f(z) > f(xo), it
follows that (T3 f)(xo) > f(xo) for all £ > 0. This means (Af)(xg), which is the maximum
principle. Any translation invariant operator with maximum principle satisfying A1 = 0
is given by a Levy-Khintchine formula.

The situation is much less precise if we allow Dy, to depend on ¢ and z(t). Now
instead of one Levy measure we have a whole family

la(t, z), 0°(t, ), My o (dy)]
and infinitesimal generators that depend on ¢ and do not commute with translations.

yfu(@)
1+ y?

o?(t, )

(Af)(a) = altsa)folo) + T2 folo) + [15+9) - @

|M(t,z,dy)

One of the more convenient ways of exploring the relationship between the process and
the objects that occur in its representation is through a natural class of functionals that
can be constructed from [a, 02, M] and P is characterized as the measure with respect to
which these functionals are martingales.
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