More generally if \mathcal{L} is the generator of a not necessarily self adjoint operator that generates a Markov semigroup, we can ask the following question. Can we estmate

$$
P_{x}\left[\frac{1}{t} \int_{0}^{t} V(x(s)) d s \geq \ell\right]
$$

The starting point for such estimates is the Feynman-Kac formula that says

$$
u(t, x)=E_{x}\left[\exp \left[\int_{0}^{t} V(x(s)) d s\right] f(x(t))\right]
$$

is the solution of

$$
u_{t}=\mathcal{L} u+V u ; u(0, x)=f(x)
$$

In particular, if $u(t, x) \equiv u(x)$ and $0<c \leq u(x) \leq C<\infty$

$$
0=u_{t}=\mathcal{L} u-\frac{\mathcal{L} u}{u} u
$$

and

$$
E_{x}\left[\exp \left[\int_{0}^{t} \frac{-\mathcal{L} u}{u}(x(s)) d s\right]\right] \leq \frac{u(x)}{c}
$$

If we denote by $m(t, A)$, the empirical measure

$$
m(t, A)=\frac{1}{t} \int_{0}^{t} \mathbf{1}_{A}(x(s)) d s
$$

and $Q_{t, x}$ the distribution of the empirical measure on the space \mathcal{M} of all probability measures on our state space X, then the bound we have is

$$
E^{Q_{t, x}}\left[\exp \left[-t\left\langle\frac{\mathcal{L} u}{u}, m\right\rangle\right]\right] \leq \frac{u(x)}{c}
$$

By Tchebechev's inequality we can estimate

$$
Q_{t, x}[E] \leq \frac{u(x)}{c} \exp \left[t \sup _{m \in E}\left\langle\frac{\mathcal{L} u}{u}, m\right\rangle\right]
$$

Therefore

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \log Q_{t, x}[E] \leq \sup _{m \in E}\left\langle\frac{\mathcal{L} u}{u}, m\right\rangle
$$

Since $u \in \mathcal{D}^{+}$is arbitrary

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \log Q_{t, x}[E] \leq \inf _{u \in \mathcal{D}^{+}} \sup _{m \in E}\left\langle\frac{\mathcal{L} u}{u}, m\right\rangle
$$

If N is small neighborhood of m, then

$$
\lim _{N \downarrow m} \limsup _{t \rightarrow \infty} \frac{1}{t} \log Q_{t, x}[N] \leq \inf _{u \in \mathcal{D}^{+}}\left\langle\frac{\mathcal{L} u}{u}, m\right\rangle
$$

The rate function for large deviation is the function

$$
I(m)=-\inf _{u \in \mathcal{D}^{+}}\left\langle\frac{\mathcal{L} u}{u}, m\right\rangle
$$

With this rate function we have upper bound for small neighborhoods. Since the sum of a finite number of exponentials decays like the worst, this yields an upper bound immediately for compact sets K, which can be covered by a finite number of arbitrary small neighborhoods.

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \log Q_{t, x}[K] \leq-\inf _{m \in K} I(m)
$$

If X is not compact some additional control is needed to prove exponential tightness, i.e.

$$
\limsup _{K \uparrow X} \limsup _{t \rightarrow \infty} \frac{1}{t} \log Q_{t, x}\left[K^{c}\right] \leq-\infty
$$

Then we can estimate for any closed set C,

$$
Q_{t, x}[C] \leq Q_{t, x}[C \cap K]+Q_{t, x}\left[K^{c}\right]
$$

Since the second term can be made to decay with a large exponential decay rate by the choice of K, our estimate for compact sets can now be extended to closed sets.

To prove exponential tightness, when X is not compact, for instance R^{d}, it is enough to get an estimate of the form

$$
E^{P_{x}}\left[\exp \left[\int_{0}^{t} V(x(s)) d s\right]\right] \leq c(x) e^{a t}
$$

with $c(x)<\infty$ and $a<\infty$ for some $V(x) \geq 0, V(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$. This would give us with

$$
\begin{gathered}
K_{\ell}=\left\{m: \int V(x) m(d x) \leq \ell\right\} \subset \mathcal{M} \\
Q_{t, x}\left[K_{\ell}^{c}\right] \leq Q_{t, x}\left[m: \int V(x) m(d x) \geq \ell\right] \leq e^{-t \ell} E^{P_{x}}\left[\exp \left[\int_{0}^{t} V(x(s)) d s\right]\right] \leq c(x) e^{(a-\ell) t}
\end{gathered}
$$

we can pick ℓ to be large and we will have our exponential tightness. For instance if

$$
\mathcal{L}=\frac{1}{2} \Delta-\langle x, \nabla\rangle
$$

is the OU process, with $u(x)=e^{\sqrt{\left(1+x^{2}\right)}}$, it is not hard to see that $V(x)=-\frac{\mathcal{L} u}{u} \rightarrow+\infty$ as $|x| \rightarrow \infty$. We can add a constant to make it non negative.

Proving lower bounds involves changing the generator from \mathcal{L} to $\widehat{\mathcal{L}}$, such that, μ is an (ergodic?) invariant measure for $\widehat{\mathcal{L}}$ and and the relative entropy of P_{x} to \widehat{P}_{x} in time t is bounded by $H t$. $\widehat{\mathcal{L}}$ may not be unique, but the optimal choice, i.e the smallest possible H will equal $I(\mu)$, providing the lower bound.

We will illustrate this in the context of diffusions on a d-torus.

$$
\mathcal{L}=\frac{1}{2} \Delta+\langle b(x), \nabla\rangle
$$

and

$$
\begin{gathered}
\widehat{\mathcal{L}}=\frac{1}{2} \Delta+\langle c(x), \nabla> \\
d \mu=\phi(x) d x
\end{gathered}
$$

$c(x)$ should be such that

$$
\frac{1}{2} \Delta \phi=\nabla \cdot c \phi
$$

and

$$
H(c)=\frac{1}{2} \int\|c-b\|^{2} \phi d x
$$

What needs to be proven is the identity

$$
-\inf _{u \in \mathcal{D}^{+}} \int \frac{\mathcal{L} u}{u} \phi d x=I(\phi)=\inf _{c: \frac{1}{2} \Delta \phi=\nabla \cdot c \phi} H(c)
$$

Replacing u by e^{-v}, the left hand side can be written as

$$
\sup _{v} \int\left[\mathcal{L} v-\frac{1}{2}|\nabla v|^{2}\right] \phi d x
$$

The right hand side is rewritten as

$$
\inf _{c} \sup _{u} \int\left[\frac{1}{2}\|c-b\|^{2}+\widehat{\mathcal{L}} u\right] \phi d x
$$

Note that $\sup _{u}$ is $+\infty$ unless $\frac{1}{2} \Delta \phi=\nabla \cdot c \phi$, in which case it is 0 . We now calculate

$$
\begin{aligned}
R H S & =\inf _{c} \sup _{u} \int\left[\frac{1}{2}\|c-b\|^{2}+\frac{1}{2} \Delta u+c(x) \cdot \nabla u\right] \phi d x \\
& =\sup _{u} \inf _{c} \int\left[\frac{1}{2}\|c-b\|^{2}+\frac{1}{2} \Delta u+c(x) \cdot \nabla u\right] \phi d x \\
& =\sup _{u} \int\left[\mathcal{L} u-\frac{1}{2}|\nabla u|^{2}\right] \phi d x \\
& =\text { LHS }
\end{aligned}
$$

because the $\inf _{c}$ can be done pointwise and

$$
\inf _{c} \frac{1}{2}\left[\|b-c\|^{2}+c \cdot p\right]=b \cdot c-\frac{1}{2}\|p\|^{2}
$$

Interesting counter example:

$$
\mathcal{L}=\frac{1}{2} \frac{d^{2}}{d x^{2}}+a \frac{d}{d x}
$$

If $\phi(x)$ satisfies

$$
\frac{1}{2} \phi_{x x}=(c \phi)_{x}
$$

then

$$
\frac{1}{2} \phi_{x}=c(x) \phi(x)+k
$$

$k=0$, because $(c(x)-a)^{2} \phi, \phi \in L_{1}(R)$. This forces $\int c(x) \phi(x) d x=0$ and

$$
\int(c(x)-a)^{2} \phi(x) d x \geq a^{2}
$$

In particular $I(\mu) \geq \frac{a^{2}}{2}$. There is a locally uniform exponential rate. But the total probability is 1 .

