More generally if £ is the generator of a not necessarily self adjoint operator that
generates a Markov semigroup, we can ask the following question. Can we estmate
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The starting point for such estimates is the Feynman-Kac formula that says

ult,z) = B, [exp[ / t v<x<s>>ds1f<x<t>>]

is the solution of
ug = Lu+ Vuyu(0,z) = f(x)

In particular, if u(¢,z) = u(z) and 0 < ¢ < u(z) < C < 0
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If we denote by m(t, A), the empirical measure

mit, A) = % /0 1a((s))ds

and ¢, the distribution of the empirical measure on the space M of all probability
measures on our state space X, then the bound we have is

EQus {exp[—t(%,m”] - U<Cw)

By Tchebechev’s inequality we can estimate

u(x Lu
Qt .z [E} < (=) exp [t sup <—,m>}
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Therefore 1 r
limsup - log Q¢ , [E] < sup <—u, m)
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Since u € DV is arbitrary

1 L
lim sup — log Q¢ » [E} < inf sup (—u, m)
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If N is small neighborhood of m, then

1 Lu
. . - < 3
fipn Imoup 3 log Qra[N] < int (55 m

The rate function for large deviation is the function
Lu
I = — inf (—

(m) =— inf (== m)

With this rate function we have upper bound for small neighborhoods. Since the sum of
a finite number of exponentials decays like the worst, this yields an upper bound imme-
diately for compact sets K, which can be covered by a finite number of arbitrary small
neighborhoods.

1
lim sup n log Q¢ [K} < — inf I(m)

t—00 meK

If X is not compact some additional control is needed to prove exponential tightness, i.e.

1
lim sup lim sup — log Q+ » [KC} < —
K1X t—oo U

Then we can estimate for any closed set C,
Q12[C] < Quu[CNK] + Q. [KC]

Since the second term can be made to decay with a large exponential decay rate by the
choice of K, our estimate for compact sets can now be extended to closed sets.

To prove exponential tightness, when X is not compact, for instance R?, it is enough
to get an estimate of the form

B [exp[ / t v<x<s>>ds@ < cfa)e

with ¢(x) < 0o and a < oo for some V(z) > 0, V() — 400 as |z| — oo. This would give
us with

K= {m: /V(a:)m(da:) <ty M

Qto[K7] < Qto [m : / V(z)m(dz) > 12] <e Mgt {exp[ /0 tV(x(s))ds]} < c(z)elet

we can pick ¢ to be large and we will have our exponential tightness. For instance if
1
L= §A— <z, V>

is the OU process, with u(z) = eV (17%*) it is not hard to see that V(z) = —£4 s +o0
as |z| — co. We can add a constant to make it non negative.
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Proving lower bounds involves changing the generator from £ to EA, such that, p is an
(ergodic?) invariant measure for £ and and the relative entropy of P, to P, in time ¢t is
bounded by Ht. L may not be unique, but the optimal choice, i.e the smallest possible H
will equal I(u), providing the lower bound.

We will illustrate this in the context of diffusions on a d-torus.
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and o
L= §A+ <c(x),V >
dp = ¢(z)dx
¢(z) should be such that
%Aqf) =V-.cop

and

What needs to be proven is the identity

— inf /%(ﬁd&:z]((ﬁ): inf  H(c)

ueD+ c:LAP=V-c¢
Replacing u by e™", the left hand side can be written as
sgp/[ﬁv — %\Vv|2]¢da:
The right hand side is rewritten as
irgfsgp/[%”c—b”z + Lulé da

Note that sup,, is +00 unless %Agb =V - c¢, in which case it is 0. We now calculate

1 1
RHS = infsup/[iﬂc —b|]? + iAu +c(z) - Vu] ¢ dx

= supinf/[%”c —b||? + %Au +c(z) - Vu] ¢ dx

= sup/[ﬁu — %|Vu|2]¢da:
=LHS

because the inf. can be done pointwise and

o1 1
inf (16— cl®+ ¢ 5 =b-e— o pl?



Interesting counter example:

If ¢(z) satisfies

then

k = 0, because (c(z) —a
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1
560 = (@) B(a) + I

)2¢, ¢ € L1(R). This forces [ c(x)¢(x)dr =0 and

/ (c(x) - a)? $(a) do > o

In particular I(u) > 2 There is a locally uniform exponential rate.

2
probability is 1.

But the total



