
More generally if L is the generator of a not necessarily self adjoint operator that
generates a Markov semigroup, we can ask the following question. Can we estmate

Px

[
1

t

∫ t

0

V (x(s))ds ≥ ℓ

]

The starting point for such estimates is the Feynman-Kac formula that says

u(t, x) = Ex

[
exp[

∫ t

0

V (x(s))ds]f(x(t))

]

is the solution of
ut = Lu + V u; u(0, x) = f(x)

In particular, if u(t, x) ≡ u(x) and 0 < c ≤ u(x) ≤ C < ∞

0 = ut = Lu − Lu

u
u

and

Ex

[
exp[

∫ t

0

−Lu

u
(x(s))ds]

]
≤ u(x)

c

If we denote by m(t, A), the empirical measure

m(t, A) =
1

t

∫ t

0

1A(x(s))ds

and Qt,x the distribution of the empirical measure on the space M of all probability
measures on our state space X , then the bound we have is

EQt,x

[
exp[−t〈Lu

u
, m〉]

]
≤ u(x)

c

By Tchebechev’s inequality we can estimate

Qt,x

[
E

]
≤ u(x)

c
exp

[
t sup

m∈E

〈Lu

u
, m〉

]

Therefore

lim sup
t→∞

1

t
log Qt,x

[
E

]
≤ sup

m∈E

〈Lu

u
, m〉

Since u ∈ D+ is arbitrary

lim sup
t→∞

1

t
log Qt,x

[
E

]
≤ inf

u∈D+
sup
m∈E

〈Lu

u
, m〉
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If N is small neighborhood of m, then

lim
N↓m

lim sup
t→∞

1

t
log Qt,x

[
N

]
≤ inf

u∈D+
〈Lu

u
, m〉

The rate function for large deviation is the function

I(m) = − inf
u∈D+

〈Lu

u
, m〉

With this rate function we have upper bound for small neighborhoods. Since the sum of
a finite number of exponentials decays like the worst, this yields an upper bound imme-
diately for compact sets K, which can be covered by a finite number of arbitrary small
neighborhoods.

lim sup
t→∞

1

t
log Qt,x

[
K

]
≤ − inf

m∈K
I(m)

If X is not compact some additional control is needed to prove exponential tightness, i.e.

lim sup
K↑X

lim sup
t→∞

1

t
log Qt,x

[
Kc

]
≤ −∞

Then we can estimate for any closed set C,

Qt,x

[
C

]
≤ Qt,x

[
C ∩ K

]
+ Qt,x

[
Kc

]

Since the second term can be made to decay with a large exponential decay rate by the
choice of K, our estimate for compact sets can now be extended to closed sets.

To prove exponential tightness, when X is not compact, for instance Rd, it is enough
to get an estimate of the form

EPx

[
exp[

∫ t

0

V (x(s))ds]

]
≤ c(x)eat

with c(x) < ∞ and a < ∞ for some V (x) ≥ 0, V (x) → +∞ as |x| → ∞. This would give
us with

Kℓ = {m :

∫
V (x)m(dx) ≤ ℓ} ⊂ M

Qt,x

[
Kc

ℓ

]
≤ Qt,x

[
m :

∫
V (x)m(dx) ≥ ℓ

]
≤ e−tℓEPx

[
exp[

∫ t

0

V (x(s))ds]

]
≤ c(x)e(a−ℓ)t

we can pick ℓ to be large and we will have our exponential tightness. For instance if

L =
1

2
∆− < x,∇ >

is the OU process, with u(x) = e
√

(1+x2), it is not hard to see that V (x) = −Lu
u

→ +∞
as |x| → ∞. We can add a constant to make it non negative.
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Proving lower bounds involves changing the generator from L to L̂, such that, µ is an
(ergodic?) invariant measure for L̂ and and the relative entropy of Px to P̂x in time t is

bounded by Ht. L̂ may not be unique, but the optimal choice, i.e the smallest possible H

will equal I(µ), providing the lower bound.
We will illustrate this in the context of diffusions on a d-torus.

L =
1

2
∆+ < b(x),∇ >

and

L̂ =
1

2
∆+ < c(x),∇ >

dµ = φ(x)dx

c(x) should be such that
1

2
∆φ = ∇ · cφ

and

H(c) =
1

2

∫
‖c − b‖2φdx

What needs to be proven is the identity

− inf
u∈D+

∫ Lu

u
φ dx = I(φ) = inf

c: 1
2
∆φ=∇·cφ

H(c)

Replacing u by e−v, the left hand side can be written as

sup
v

∫
[Lv − 1

2
|∇v|2]φ dx

The right hand side is rewritten as

inf
c

sup
u

∫
[
1

2
‖c − b‖2 + L̂u]φ dx

Note that supu is +∞ unless 1
2∆φ = ∇ · cφ, in which case it is 0. We now calculate

RHS = inf
c

sup
u

∫
[
1

2
‖c − b‖2 +

1

2
∆u + c(x) · ∇u] φ dx

= sup
u

inf
c

∫
[
1

2
‖c − b‖2 +

1

2
∆u + c(x) · ∇u] φ dx

= sup
u

∫
[Lu − 1

2
|∇u|2]φ dx

= LHS

because the infc can be done pointwise and

inf
c

1

2
[‖b − c‖2 + c · p] = b · c − 1

2
‖p‖2

3



Interesting counter example:

L =
1

2

d2

dx2
+ a

d

dx

If φ(x) satisfies
1

2
φxx = (c φ)x

then
1

2
φx = c(x) φ(x) + k

k = 0, because (c(x) − a)2φ, φ ∈ L1(R). This forces
∫

c(x)φ(x)dx = 0 and

∫
(c(x) − a)2 φ(x) dx ≥ a2

In particular I(µ) ≥ a2

2
. There is a locally uniform exponential rate. But the total

probability is 1.
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