
Ergodic Theorems: Suppose

L =
1

2

∑

i,j

ai,j(x)Di,j +
∑

j

bj(x)Dj

is the generator of a process. Assume that {ai,j} are continuous and strictly positive
definite, i.e. {ai,j} is positive definite for each x ∈ Rd. An invariant probability measure
is one for which ∫

p(t, x, A)µ(dx) = µ(A)

for every Borel set A ⊂ Rd. First µ must be absolutely continuous, i.e. µ(dy) = φ(y)dy
for some φ ∈ L1(R

d). The proof depends on the fact that p(t, x, dy) in fact has a density
p(t, x, y)dy for every t > 0, and x ∈ Rd. We would like to prove the following.

1. Uniqueness. µ(dx) = φ(x)dx is unique. φ(x) > 0 a.e.

2. Law of Large Numbers. With probability 1 with respect to any Px,

lim
t→∞

1

t

∫ t

0

f(x(s))ds =

∫
f(y)φ(y)dy

for any bounded measurable function f(·).
3. Convergence to equilibrium.

lim
t→∞

∫
|p(t, x, y)− φ(y)|dy = 0

4. Central Limit Theorems. If
∫
f(y)φ(y)dy = 0, under additional assumptions

1√
t

∫ t

0

f(x(s))ds

has an asymptotic normal distribution for large t.

5. Large Deviations from the Ergodic Theorem. Study the large deviation behavior

Px

[
1

t

∫ t

0

f(x(s))ds ∈ A

]

Uniqueness: Uniqueness and ergodicity are related. Let µ be an invriant probability
measure for the Markov process. This means that if we start with initial distribution µ the
Pµ =

∫
Pxdµ(x) is staionary process for t ≥ 0 and can be easily extended as a stationary

process for −∞ < t < ∞. If Pµ is not ergodic with respect to trnaslations, then there
exists a trnaslation invariant set E on the space C[(−∞,∞);Rd] of trajectories such that
0 < Pµ(A) < 1. We will show now that E can be chosen to be of the form x(0) ∈ A for some
Borel set. Note that any measurable set E can be approximated by sets measurable with
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respect to the σ-field σ{x(t) : |t| ≤ T} and if it is translation invariant can be approximated
by a set from σ{x(t) : T ≤ t ≤ 2T} as well as from σ{x(t) : −2T ≤ t ≤ −T}. In particular
it is in the past σ{x(t) : t ≤ −T} as well as the future σ{x(t) : t ≥ T}. But for a Markov
process given the present x(0) the past and the future are independent. This means given
x(0) the set E is indpendent of itself. Therefore P [E|x(0)] = 0 or 1. Now E can be
identified with the set {x(·) : P [E|x(0)] = 1}. If there are two invariant measures µ1, µ2,
then clearly Pµ with µ = 1

2 [µ1 + µ2] can not be ergodic.
In particular if the invariant measure µ is not unique we can find a partition of

Rd = A ∪ Ac such that the restrictions of µ to A and Ac are both invariant. This means
for every t > 0, p(t, x, A) = 1 for a.e. x ∈ A and p(t, x, Ac) = 1 for a.e x ∈ Ac.

We note that, from PDE, we can obtain that p(t, x, A) is a jointly continuous function
of t, x for t > 0. In partcular y : p(t, y, A) > 1

2 is an open set U , and for almost all x ∈ Ac

p(2t, x, A) =

∫
p(t, x, dy)p(t, y, A) ≥ 1

2
p(t, x, U) = 0

Therefore to prove uniqueness it suffices to show that given x ∈ Rd and any open ball B,
p(t, x, B) > 0 for some t > 0, x ∈ Rd any ball B. Suppose Px[x(t) ∈ B] = 0 for all t. By
Girsanov’s theorem the same is true if we change the drift, and also if we rescale time.
Therefore

Qǫ
x[x(t) ∈ B] = 0

where Qǫ
x corresponds to

Lǫ =
ǫ

2

∑

i,j

ai,j(x)Di,j +
∑

j

[ǫbj(x) + cj(x)]Dj

with {cj(x)} having compact support. If we let ǫ → 0 the same is true for the limit. But
the limit is just an O.D.E and we can pick our coeffiicients!. This can not be true.

This proves the uniqueness of µ and the ergodicity of Pµ. It is not hard to see that
from

µ(A) =

∫
p(t, x, A)dµ(x)

and the existence of a density p(t, x, y) we can conclude that µ in fact has a density π(x).
The positivity of φ(x) again come from PDE. If

∫
A
φ(x)dx = 0 for a set with positive

Lebesgue meausre, then p(t, x, A) would be 0 for all x and t > 0, and the PDE estimate
shows the convergence of p(t, x, A) → χA(x) in Lp as t → 0. Another way of verifying
uniqueness is by a direct argument. Let π(x, y) = p(1, x, y). If µ is invariant then, it is
invariant for π(x, y) as well. Hence

∫
π(x, y)dyµ(dx) = µ(dy)

This implies that µ(dx) = φ(x)dx and

∫
π(x, y)φ(x)dx = φ(y)
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If there are two solutions let us denote their difference by ψ(x). Then
∫
ψ(x)dx = 0,

∫
ψ(x)π(x, y)dx = ψ(y)

and

∫
|ψ(y)dy| =

∫
|
∫
ψ(x)π(x, y)dx|dy ≤

∫ ∫
|ψ(x)|π(x, y)dxdy =

∫
|ψ(x)|dx

In particular for almost all y,

|
∫
ψ(x)π(x, y)dx| =

∫
|ψ(x)|π(x, y)dx

This can not happen unless ψ(x) is of one sign. But it has integral equal to 0. Hence
ψ = 0.

Ergodic Theorem. Because of ergodicity we know that with probability 1 with respect
to any Pµ,

lim
t→∞

1

t

∫ t

0

f(x(s))ds =

∫
f(y)φ(y)dy

for any bounded measurable function f(·). On the other hand form the positivity of
p(t, x, y), for t > 0, p(t, x, y) and µ are mutually absolutely continuous. By the Markov
property if we ignore a small initial segment of time then the almost sure convergence
w.r.t. Pµ gives a.e. convergence w.r.t Px for any x.

Convergence to equilibrium. This is not much different from uniqueness. Let us denote
by

δ(t, x) =

∫
|p(t, x, y)− φ(y)|dy

then

δ(t+ s, x) =

∫
|
∫

[p(t, x, z′) − φ(z′)]p(s, z′, z)dz′|dz

≤
∫

|p(t, x, z′) − φ(z′)|p(s, z′, z)dzdz′

= δ(t, x, y)

proving δ(t, x) is ↓ in t for fixed x. It is therefore sufficient to prove that δ(n, x) → 0
as n → ∞. We have a Markov Chain with almost surely positive transition density
π(x, y) = p(1, x, y) satisfying, x→ π(x, ·) is continuous as a map into L1(R

d) that admits
an invariant probability density φ(x). We need to prove that for compact K,

lim
n→∞

sup
x∈K

∫
|πn(x, y)− φ(y)|dy
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The basic idea here is coupling. Let us take two copies with transition probability

π̂(x1, x2; dy1, dy2) =

∫
min{π(x1, y)π(x2, y)}δ(y − y1) × δ(y − y2)dy

+

∫
[π(x1, y)− min{π(x1, y)π(x2, y)}]δ(y− y1)dy

×
∫

[π(x2, y) min{π(x1, y)π(x2, y)}]δ(y − y2)dy

In words, if g(y) = minmin{π(x1, y)π(x2, y)} the two components jump on to the diagonal
y = y1 = y2 with density g(y)dy and jump indpendently with the remaining probability.
Once they are on the diagonal they stay on the diagonal. It is not hard to see that each
component evolves according to π. Therefore

∫
|πn(x1, y) − πn(x2, y)|dy ≤ π̂n(x1, x2; {y1 6= y2}) = δn(x1, x2)

and if rn(x1, x2, dy1, dy2) is the part of π̂n away from the diagonal

δn+1(x1, x2) = δn(x1, x2) − 2

∫
min{π(y1, y), π(y2, y)}rn(x1, x2, dy1, dy2)dy

Since δn ≥ 0 we must have
∫

min{π(y1, y), π(y2, y)}rn(x1, x2, dy1, dy2)dy → 0

as n→ ∞. Since π(x, y) > 0 a.e, this is possible only if

∫

|y1|≤ℓ

|y2|≤ℓ

rn(x1, x2, dy1, dy2) → 0

On the other hand if the total mass of rn does not go to 0, we must have

lim
ℓ→∞

lim inf
n→∞

rn(x1, x2, {|y1| ≥ ℓ ∪ |y2| ≥ ℓ}) ≥ c > 0

Since
rn(x1, x2, {|y1| ≥ ℓ ∪ |y2| ≥ ℓ}) ≤ πn(x1, |y1| ≥ ℓ) + πn(x2, |y2| ≥ ℓ)

this contradicts the ergodic theorem

1

n

n∑

j=1

πj(x,A) → µ(A)

Central Limit Theorem. Consider

A(t) =

∫ t

0

f(x(s)ds
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If
∫
f(x)dµ(x) = 0, one can expect to prove the C.L.T that states

A(t)√
t

≃ N(0, σ2)

The proof depends on ability to solve

Lu = −f

with a nice u. This is the Fredholm alternative. Then by Itô’s formula

u(x(t)) − u(x) =

∫ t

0

σ(x(s))(∇u)(x(s))dβ(s)−
∫ t

0

f(x(s))ds

Therefore

A(t) =

∫ t

0

σ(x(s))(∇u)(x(s))dβ(s)− u(x(t)) − u(x)

Dividing by
√
t if we assume that u(x(t))√

t
→ 0 as t→ ∞, we need only analyse

1√
t

∫ t

0

σ(x(s))(∇u)(x(s))dβ(s) = β̂(
1

t

∫ t

0

< a(x(s))∇u(x(s)),∇u(x(s))> ds)

and by the ergodic theorem this converges to β̂(σ2) ≃ N(0, σ2) with

σ2 =

∫
< a(x)(∇u)(x), (∇u)(x) > dµ(x)

One can work with approximate solutions of Lu = −f namely

λuλ −Luλ = f

and reduce the CLT to the behavior of uλ as λ→ 0. One needs

λ

∫
‖uλ‖2dµ→ 0

and ∫
< a(x)(∇uλ(x) − g(x)), (∇uλ(x) − g(x)) > dµ(x) → 0

for some g. One then applies Itô’s formula to uλ(x) and chooses λ = t−1. The errors are
easily controlled.

To see this we need to control

Xλ(t) =
1√
t

∫ t

0

λuλ(x(s))ds
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Starting from the equlibrium µ

‖Xλ(t)‖2 ≤ λ
√
t‖uλ‖2 ≤

√
λ‖uλ‖2 → 0

As for the stochastic integral part we have the CLT valid for

Mλ(t)√
t

=
1√
t

∫ t

0

σ(x(s))(∇uλ)(x(s))dβ(s)

The difference between between Mλ1
(t) and Mλ2

(t) is easily estimated by

1

t
E

[
[Mλ1

(t) −Mλ2
(t)]2

]

=

∫
< a(x)(∇uλ1

(x) −∇uλ2
(x)), (∇uλ1

(x) −∇uλ2
(x)) > dµ(x) → 0

A special situation is when L is self adjoint with respect to µ. Then one defines the
Dirichlet norm by

‖u‖2
1 =

∫
< a(x)(∇u)(x), (∇u)(x) > dµ(x)

and the dual norm

‖f‖−1 = sup
u

∫
f(x)u(x)dµ

‖u‖1

The finiteness of ‖f‖−1 implies both the conditions needed for CLT and this is easily seen
by the spectral theorem. If k(dσ) is the spectral measure of f with respect to L, then the
assumption is ∫ ∞

0+

1

σ
dk(σ) <∞

The conditions to be proved are

lim
λ→0

∫ ∞

0+

λ

(λ+ σ)2
k(dσ) = 0

and

lim
λ1→0
λ2→0

∫ ∞

0+

| 1

(λ1 + σ)
− 1

(λ2 + σ)
|2σdk(σ) = 0

Both are consequences of the dominated convergence theorem.

Large Deviations. We wish to estimate

Px[
1

t

∫ t

0

f(x(s))ds ≥ ℓ]

where ℓ >
∫
f(x)dµ(x). Does this decay exponentially? If so what is the rate? We will do

one example. Brownian motion on the circle. The operator is L = 1
2

d2

dx2 acting on periodic
functions of period 1. The invariant measure is just Lebesgue measure. φ(x) ≡ 1.

6



One way to estimate the rate is to try and compute

lim
t→∞

1

t
logEx

[
σ

∫ t

0

f(x(s))ds

]
= F (σ)

Then by Tchebechev’s inequality

Px[
1

t

∫ t

0

f(x(s))ds ≥ ℓ] ≤ e−σℓt+tF (σ)+o(t)

and

lim sup
1

t
logPx[

1

t

∫ t

0

f(x(s))ds ≥ ℓ] ≤ F (σ) − ℓσ

Optimizing over σ > 0,

lim sup
1

t
logPx[

1

t

∫ t

0

f(x(s))ds ≥ ℓ] ≤ − sup
σ>0

[ℓσ − F (σ)]

It is not hard to see that F ′(0) =
∫
f(x)dx, and therefore for ℓ >

∫
f(x)dx,

sup
σ>0

[ℓσ − F (σ)] = sup
σ

[ℓσ − F (σ)]

The same is true in the other side. The large deviation rate function can be then

I(ℓ) = sup
σ

[ℓσ − F (σ)]

What is F (σ)? We can look at Feynman-Kac formula and

u(t, x) = Ex

[
σ

∫ t

0

f(x(s))ds

]

solves

ut =
1

2
uxx + σfu; u(0, x) = 1

If we denote the eigen values and eigen functions of 1
2uxx + σfu by {λj , φj}, then

u(t, x) =
∑

j

φj(x)e
tλj

∫
φj(y)dy

The eigenvalues tend to −∞ and the one that counts will be the largest one, the principal
eigen value. Note that φ1(y) > 0. Hence

F (σ) = λ1(σf) = sup
‖g‖2=1

[σ

∫
f(x)g2(x)dx− 1

2

∫
|gx|2dx]
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We can rewrite this as

F (σ) = λ1(σf) = sup
g≥0∫

g(x)dx=1

[
σ

∫
f(x)g(x)dx− 1

8

∫ |gx|2
g

dx

]

This has an interpretation. Instead of 1
2

d2

dx2 modify with a drift

Lg =
1

2

d2

dx2
+
gx

2g

d

dx

This has invariant density g. Now the erigodic theorem will produce g averages. The
process then will behave like a process with invariant density g. Call this process Qg,x.

Px[A] =

∫

A

dPx

dQg,x

dQg,x

Our set A will have Qg,x measure 1. We need to concentrate on how small the derivative
dPx

dQg,x
can be on A. By Girsanov formula

log
dQg,x

dPx

=

∫
gx

2g
(x(s))dx(s)− 1

8

∫
g2

x(x(s))

g2(x(s))
ds

The ergodic theorem under Qg,x will produce a limit

1

t
log

dQg,x

dPx

→ 1

4

∫
g2

x

g
dx− 1

8

∫
g2

x

g
dx =

1

8

∫
g2

x

g
dx

giving with the help of Jensen’s inequality a lower bound of

exp
[
− t

8

∫
g2

x

g
dx

]

for a Brownian Motion to behave like a process with invariant density g for a duration t.
This provides for our original estimate

I(ℓ) = inf
g≥0,

∫
gdx=1∫

f(x)g(x)dx=ℓ

[1

8

∫
g2

x

g
dx

]
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