Exit Problem. Consider

$$
x_{\epsilon}(t)=x+\int_{0}^{t} b\left(x_{\epsilon}(s)\right) d s+\sqrt{\epsilon} \beta(t)
$$

and let $Q_{x, \epsilon}$ be the distribution of the solution x_{ϵ}. As $\epsilon \rightarrow 0$ the measure $Q_{x, \epsilon}$ concentrates on the trajectory which is the solution of

$$
x(t)=x+\int_{0}^{t} b(x(s)) d s
$$

There is a large deviation principle for $\left\{Q_{x, \epsilon}\right\}$ on $C\left[[0, T] ; R^{d}\right]$.

$$
Q_{x, \epsilon}(A)=\exp \left[-\inf _{\substack{f(\cdot) \in A \\ f(0)=x}} \frac{1}{2 \epsilon} \int_{0}^{T}\left\|f^{\prime}(t)-b(f(t))\right\|^{2} d t+o\left(\frac{1}{\epsilon}\right)\right]
$$

More precisely for closed sets C

$$
\limsup _{\substack{y \rightarrow x \\ \epsilon \rightarrow 0}} \epsilon \log Q_{y, \epsilon}(C) \leq-\inf _{\substack{f(\cdot) \in C \\ f(0)=x}} \frac{1}{2} \int_{0}^{T}\left\|f^{\prime}(t)-b(f(t))\right\|^{2} d t
$$

and for open sets G,

$$
\liminf _{\substack{y \rightarrow x \\ \epsilon \rightarrow 0}} \epsilon \log Q_{y, \epsilon}(G) \leq-\inf _{\substack{f(\cdot) \in G \\ f(0)=x}} \frac{1}{2} \int_{0}^{T}\left\|f^{\prime}(t)-b(f(t))\right\|^{2} d t
$$

Let G be an open set containing a unique stable equlibrium point x_{0} for the ODE

$$
\dot{x}(t)=b(x(t))
$$

i.e. any solution of the ODE starting from any point in the closure \bar{G} tends to x_{0} as $t \rightarrow \infty$, remaining in G for all $t>0$. For instance assume that G is smooth and $b \neq 0$ on the boundary δG and points inward at every point. For any $x \in G$ and $z \in \delta G$ let

$$
U(T, x, z)=\inf _{\substack{f: f(0)=x, f(T)=z \\ f(t) \in G \text { for } t<T}} \frac{1}{2} \int_{0}^{T}\left\|f^{\prime}(t)-b(f(t))\right\|^{2} d t
$$

and

$$
U(x, z)=\inf _{T>0} U(T, z)
$$

Let $z_{0} \in \delta G$ be such that $U\left(x_{0}, z_{0}\right)<U\left(x_{0}, z\right)$ for all $z \in \delta G, z \neq z_{0}$. If τ is the exit time and $x(\tau)$ is the exit place from G, then for any $x \in G$ and any neighborhood N of z_{0},

Theorem:

$$
\lim _{\epsilon \rightarrow 0} Q_{x, \epsilon}[x(\tau) \notin N] \rightarrow 0
$$

Remark. No matter where the process starts inside G intially it will follow the ODE, be driven towards x_{0}, slow down as it reaches x_{0} and hang around there for a very long time.

Let us take two neighborhoods S_{1}, S_{2} around x_{0}, with $x_{0} \in S_{1} \subset \bar{S}_{1} \subset S_{2}$. It is not hard to see that $U(x, z)$ is a continuous function of x and z, and given N, we can pick S_{1}, S_{2} such that

$$
\inf _{x \in \delta S_{2}} \inf _{z \in N^{c}} U(x, z) \geq \sup _{x \in \delta S_{2}} U\left(x, z_{0}\right)+\eta
$$

We will estimate the following probabilities: if τ^{\prime} be the exit time from $G \cap \bar{S}_{1}^{c}$

$$
\limsup _{\epsilon \rightarrow 0} \epsilon \sup _{x \in \delta S_{2}} \log Q_{x, \epsilon}\left[x\left(\tau^{\prime}\right) \in N^{c}\right] \leq-\inf _{x \in \delta S_{2}} \inf _{z \in N^{c}} U(x, z)
$$

and

$$
\liminf _{\epsilon \rightarrow 0} \epsilon \inf _{x \in \delta S_{2}} \log Q_{x, \epsilon}\left[x\left(\tau^{\prime}\right) \in N\right] \geq-\sup _{x \in \delta S_{2}} U\left(x, z_{0}\right)
$$

This will do it. The picture is the process will sooner or later exit from \bar{S}_{1}^{c}. But most of the time it will be pulled back to x_{0}. There is a very small chance that it will exit in N and even smaller chance of exiting from N^{c}. So it is most likely to exit from N.

First we estimate the probability that exit from \bar{S}_{1}^{c} takes too long.

$$
\limsup _{T \rightarrow \infty} \limsup _{\epsilon \rightarrow 0} \epsilon \log \sup _{x \in \bar{S}_{1}^{c}} Q_{x, \epsilon}\left[\tau^{\prime} \geq T\right]=-\infty
$$

Otherwise there will be paths with $\int_{0}^{T}\left\|f^{\prime}(t)-b(f(t))\right\|^{2} d t$ bounded and T large. This means there will be paths with $\int_{0}^{T}\left\|f^{\prime}(t)-b(f(t))\right\|^{2} d t$ small and T large. This in turn means solutions of ODE remaining in \bar{S}_{1}^{c} for too long. If the paths do not hang around for too long, the large deviation estimate applies and it is much more likely to exit from N, than from N^{c}.

A special case is the gradient flow, where $b(x)=-(\nabla V)(x) . x_{0}$ is a local minimum of V. Then it is not hard to see that $U\left(x_{0}, z\right)=2\left[V(z)-V\left(x_{0}\right)\right]$.

Invariant distributions.

$$
\mathcal{L}=\frac{1}{2} \sum_{i, j} a_{i, j}(x) D_{i, j}+\sum_{j} b_{j}(x) D_{j}
$$

μ is probability measure on R^{d} such that

$$
\int(\mathcal{L} u)(x) d \mu(x)=0
$$

for all smooth u with compact support. Suppose there is a unique process corresponding to \mathcal{L}, is μ an invariant distribution fro the process? Proof dpends on duality and consequently finding enough classical solutions for the equation

$$
u_{t}=\mathcal{L} u
$$

or the resolvent equation

$$
\lambda u-\mathcal{L} u=f
$$

which require ellipticity and Hölder continuity. Assume only that the coefficients are continuous, but the process is unique. If we know that $d \mu=\phi d x$ with $\phi \in L_{q}$ we can use the L_{p} theory in the elliptic case. To prove it in general requires several steps.

Invariance Principle.

Theorem: Suppose $\pi_{h}(x, d y)$ is a Markov Chain such that, for every smooth u with compact support

$$
\frac{1}{h} \int[u(y)-u(x)] \pi_{h}(x, d y) \rightarrow(\mathcal{L} u)(x)
$$

uniformy on compact sets, and there exists a unique process with out explosion for \mathcal{L}, then the interpolated Markov Chain converges to the process. In particular

$$
\lim _{\substack{h \rightarrow 0 \\ n h \rightarrow t}} \int f(y) \pi_{h}^{n}(x, d y) \rightarrow\left(T_{t} f\right)(x)=\int f(y) p(t, x, d y)
$$

where p is the transition probability of the process corresponding to \mathcal{L}.
Proof: Step 1. Let us interpolate the Markov chain and call the process P_{h}. Let us take smooth cut off function $\phi^{R}(x)$ and define

$$
\pi_{h}^{R}(x, y)=\phi^{R}(x) \pi_{h}(x, d y)+\left(1-\phi^{R}(x)\right) \delta_{x}(d y)
$$

It is easy to see that

$$
\frac{1}{h} \int[u(y)-u(x)] \pi_{h}^{R}(x, d y) \rightarrow\left(\mathcal{L}^{R} u\right)(x)=\phi^{R}(x)(\mathcal{L} u)(x)
$$

uniformly in x. We will prove that the processes $P_{h, x}^{R}$ are tight. Let τ_{ϵ} be the exit time from the ball of radius ϵ for the process starting from x. We want to estimate

$$
\sup _{x} \sup _{h \leq 1} P_{h, x}^{R}\left[\tau_{\epsilon} \leq \delta\right]=F(\epsilon, \delta)
$$

If u_{ϵ} is a smooth function that is 1 in a ball of radius $\frac{\epsilon}{2}$ and 0 outside a ball of radius ϵ, $\left\|\mathcal{L}^{R} u_{\epsilon}(x)\right\| \leq C_{\epsilon}$ and

$$
\int[u(y)-u(x)] \pi_{h}^{R}(x, d y) \leq C_{\epsilon} h
$$

In particular

$$
u(X(n h))-u(x)-n h C_{\epsilon}
$$

is a super-martingale under $P_{x, h}^{R}$ and

$$
P_{x, h}^{R}\left[\tau_{\epsilon} \leq \delta\right] \leq E\left[u\left(\tau_{\epsilon} \wedge \delta\right)\right] \leq \delta C_{\epsilon}
$$

Let $\tau_{1}, \tau_{2}, \ldots, \tau_{N}$ be the successive times at which $X(n h)$ gets away a distance ϵ from the previous $x\left(\tau_{i}\right)$. We proceed till $\tau_{N}>T$. We estimate the following.

$$
\begin{gathered}
\sup _{\omega, h} E\left[e^{-\tau_{i+1} \mid} \mid \mathcal{F}_{\tau_{i}}\right] \leq \rho<1 \\
P[N \geq k] \leq P\left[\tau_{1}+\cdots+\tau_{k} \leq T\right] \leq e^{T} E\left[e^{-\left(\tau_{1}+\cdots+\tau_{k}\right)}\right] \leq e^{T} \rho^{k}
\end{gathered}
$$

and

$$
\left.P\left[\min \left(\tau_{1}, \ldots, \tau_{k}\right) \leq \delta\right)\right] \leq k \delta C_{\epsilon}
$$

From the locality of \mathcal{L}, it follows that

$$
\pi_{h}^{R}\left(x, B(x, \epsilon)^{c}\right)=o(h)
$$

Therefore

$$
\sup _{x} P_{x, h}^{R}\left[\sup _{0 \leq j \leq n} \mid X((j+1) h-X(j h) \mid \geq \epsilon] \rightarrow 0\right.
$$

as $h \rightarrow 0$. This is enough to control the oscillations. We can use the control on the modulus of continuity to prove tightness. If P_{x}^{R} is any limit it is a solution to the martingale problem for \mathcal{L}^{R}. This agrees with \mathcal{L} until th exit itme from B_{R} the ball of radius R. Since there is no explotion if R is large τ_{R} is large, is bigger than T, with probability nearly one and so $P_{x, h}^{R}$ and $P_{x, h}$ are close and the limit of $P_{x, h}$ as $h \rightarrow 0$ is P_{x}.

Finally to prove that μ is the invariant measure we will construct a Markov Chain $\left\{\pi_{h}(x, d y)\right\}$, for which μ is inavariant and which converges to $\left\{P_{x}\right\}$. Given \mathcal{L}, we construct the resolvent

$$
\Pi_{h}=(I-h \mathcal{L})^{-1}
$$

on the range of D_{h} of bounded functions with two bounded derivatives under $(I-h \mathcal{L})$. The maximum principle guarantees that Π_{h} is well defined and is positivity preserving. We define a linear functional Λ on functions of two variables of the form

$$
g(x, y)=v_{0}(y)+\sum_{i} u_{i}(x) w_{i}(y)
$$

with u, w being bounded continuous functions and $w_{i}=v_{i}-h \mathcal{L} v_{i} \in D_{h}$, by

$$
\Lambda(g)=\int v_{0}(y) d \mu(y)+\sum_{i=1}^{n} \int u_{i}(x) v_{i}(x) d \mu(x)
$$

Suppose Λ is nonnegative and we extend it as a non negative linear functional. Then both the marginals of Λ are μ. [Note that we can take $v_{1}=1$ and the remaining v as 0 . Then $\left.g(x, y)=u_{1}(x)\right]$. If we take the r.c.p.d $\pi_{h}(x, d y), \mu \pi_{h}=\mu$ and

$$
\pi_{h}(v-h \mathcal{L} v)=v
$$

for smooth v we have

$$
\frac{1}{h}\left(\pi_{h} v-v\right)=\pi_{h} \mathcal{L} v \rightarrow \mathcal{L} v
$$

for v with compact support.

Suppose $g(x, y) \geq 0$. Then consider the function

$$
\inf _{x} \sum_{i=1}^{n} u_{i}(x) v_{i}=\Phi(\mathbf{v})
$$

defined for $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \in R^{n} . \Phi$ is concave and

$$
\Phi(\mathbf{v}(x)-t(\mathcal{L} \mathbf{v})(x))
$$

is a convex function of t for all x. So is the integral

$$
\begin{gathered}
\psi(t)=\int \Phi(\mathbf{v}(x)-t(\mathcal{L} \mathbf{v})(x)) d \mu(x) \\
\psi^{\prime}(0)=-\int \sum_{i} \Phi_{u_{i}}(\mathbf{v}(x))\left(\mathcal{L} v_{i}\right)(x) d \mu(x) \leq \int[\mathcal{L} \Phi(\mathbf{v})](x) d \mu(x)=0
\end{gathered}
$$

Therefore for $h \geq 0$,

$$
\psi(h)=\int \Phi(\mathbf{v}(x)-h(\mathcal{L} \mathbf{v})(x)) d \mu(x) \leq \int \Phi(\mathbf{v}(x)) d \mu(x)
$$

We can approximate Φ by smooth convex functions. Denote $v_{i}-h \mathcal{L} v_{i}=w_{i}$. Then

$$
\begin{aligned}
\int\left[v_{0}(x)+\sum u_{i}(x) v_{i}(x)\right] d \mu(x) & \geq \int\left[v_{0}(x)+\Phi(\mathbf{v}(x))\right] d \mu(x) \\
& \geq \int\left[v_{0}(x)+\Phi(\mathbf{w}(x))\right] d \mu(x)
\end{aligned}
$$

But

$$
\left[v_{0}(y)+\Phi(\mathbf{w}(y)]=\inf _{x}\left[v_{0}(y)+\sum_{i} u_{i}(x) w_{i}(y)\right]=\inf _{x} g(x, y) \geq 0\right.
$$

