
Exit Problem. Consider

xǫ(t) = x+

∫ t

0

b(xǫ(s))ds+
√
ǫβ(t)

and let Qx,ǫ be the distribution of the solution xǫ. As ǫ→ 0 the measure Qx,ǫ concentrates
on the trajectory which is the solution of

x(t) = x+

∫ t

0

b(x(s))ds

There is a large deviation principle for {Qx,ǫ} on C[[0, T ];Rd].

Qx,ǫ(A) = exp[− inf
f(·)∈A

f(0)=x

1

2ǫ

∫ T

0

‖f ′(t) − b(f(t))‖2dt+ o(
1

ǫ
)]

More precisely for closed sets C

lim sup
y→x
ǫ→0

ǫ logQy,ǫ(C) ≤ − inf
f(·)∈C

f(0)=x

1

2

∫ T

0

‖f ′(t) − b(f(t))‖2dt

and for open sets G,

lim inf
y→x
ǫ→0

ǫ logQy,ǫ(G) ≤ − inf
f(·)∈G

f(0)=x

1

2

∫ T

0

‖f ′(t) − b(f(t))‖2dt

Let G be an open set containing a unique stable equlibrium point x0 for the ODE

ẋ(t) = b(x(t))

i.e. any solution of the ODE starting from any point in the closure Ḡ tends to x0 as
t → ∞, remaining in G for all t > 0. For instance assume that G is smooth and b 6= 0 on
the boundary δG and points inward at every point. For any x ∈ G and z ∈ δG let

U(T, x, z) = inf
f:f(0)=x,f(T )=z

f(t)∈G for t<T

1

2

∫ T

0

‖f ′(t) − b(f(t))‖2dt

and
U(x, z) = inf

T>0
U(T, z)

Let z0 ∈ δG be such that U(x0, z0) < U(x0, z) for all z ∈ δG, z 6= z0. If τ is the exit time
and x(τ) is the exit place from G, then for any x ∈ G and any neighborhood N of z0,

Theorem:

lim
ǫ→0

Qx,ǫ[x(τ) /∈ N ] → 0
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Remark. No matter where the process starts inside G intially it will follow the ODE, be
driven towards x0, slow down as it reaches x0 and hang around there for a very long time.

Let us take two neighborhoods S1, S2 around x0, with x0 ∈ S1 ⊂ S̄1 ⊂ S2. It is not
hard to see that U(x, z) is a continuous function of x and z, and given N , we can pick S1,
S2 such that

inf
x∈δS2

inf
z∈Nc

U(x, z) ≥ sup
x∈δS2

U(x, z0) + η

We will estimate the following probabilities: if τ ′ be the exit time from G ∩ S̄c
1

lim sup
ǫ→0

ǫ sup
x∈δS2

logQx,ǫ[x(τ
′) ∈ N c] ≤ − inf

x∈δS2

inf
z∈Nc

U(x, z)

and
lim inf

ǫ→0
ǫ inf

x∈δS2

logQx,ǫ[x(τ
′) ∈ N ] ≥ − sup

x∈δS2

U(x, z0)

This will do it. The picture is the process will sooner or later exit from S̄c
1. But most of

the time it will be pulled back to x0. There is a very small chance that it will exit in N
and even smaller chance of exiting from N c. So it is most likely to exit from N .

First we estimate the probability that exit from S̄c
1 takes too long.

lim sup
T→∞

lim sup
ǫ→0

ǫ log sup
x∈S̄c

1

Qx,ǫ[τ
′ ≥ T ] = −∞

Otherwise there will be paths with
∫ T

0
‖f ′(t) − b(f(t))‖2dt bounded and T large. This

means there will be paths with
∫ T

0
‖f ′(t) − b(f(t))‖2dt small and T large. This in turn

means solutions of ODE remaining in S̄c
1 for too long. If the paths do not hang around for

too long, the large deviation estimate applies and it is much more likely to exit from N ,
than from N c.

A special case is the gradient flow, where b(x) = −(∇V )(x). x0 is a local minimum of V .
Then it is not hard to see that U(x0, z) = 2[V (z) − V (x0)].

Invariant distributions.

L =
1

2

∑

i,j

ai,j(x)Di,j +
∑

j

bj(x)Dj

µ is probability measure on Rd such that
∫

(Lu)(x)dµ(x) = 0

for all smooth u with compact support. Suppose there is a unique process corresponding to
L, is µ an invariant distribution fro the process? Proof dpends on duality and consequently
finding enough classical solutions for the equation

ut = Lu
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or the resolvent equation
λu−Lu = f

which require ellipticity and Hölder continuity. Assume only that the coefficients are
continuous, but the process is unique. If we know that dµ = φdx with φ ∈ Lq we can use
the Lp theory in the elliptic case. To prove it in general requires several steps.

Invariance Principle.

Theorem: Suppose πh(x, dy) is a Markov Chain such that, for every smooth u with
compact support

1

h

∫

[u(y) − u(x)]πh(x, dy) → (Lu)(x)

uniformy on compact sets, and there exists a unique process with out explosion for L, then
the interpolated Markov Chain converges to the process. In particular

lim
h→0

nh→t

∫

f(y)πn
h(x, dy) → (Ttf)(x) =

∫

f(y)p(t, x, dy)

where p is the transition probability of the process corresponding to L.

Proof: Step 1. Let us interpolate the Markov chain and call the process Ph. Let us take
smooth cut off function φR(x) and define

πR
h (x, y) = φR(x)πh(x, dy) + (1 − φR(x))δx(dy)

It is easy to see that

1

h

∫

[u(y) − u(x)]πR
h (x, dy) → (LRu)(x) = φR(x)(Lu)(x)

uniformly in x. We will prove that the processes PR
h,x are tight. Let τǫ be the exit time

from the ball of radius ǫ for the process starting from x. We want to estimate

sup
x

sup
h≤1

PR
h,x[τǫ ≤ δ] = F (ǫ, δ)

If uǫ is a smooth function that is 1 in a ball of radius ǫ
2 and 0 outside a ball of radius ǫ,

‖LRuǫ(x)‖ ≤ Cǫ and
∫

[u(y) − u(x)]πR
h (x, dy) ≤ Cǫh

In particular
u(X(nh)) − u(x) − nhCǫ

is a super-martingale under PR
x,h and

PR
x,h[τǫ ≤ δ] ≤ E[u(τǫ ∧ δ)] ≤ δCǫ

3



Let τ1, τ2, . . . , τN be the successive times at which X(nh) gets away a distance ǫ from the
previous x(τi). We proceed till τN > T . We estimate the following.

sup
ω,h

E[e−τi+1 |Fτi
] ≤ ρ < 1

P [N ≥ k] ≤ P [τ1 + · · · + τk ≤ T ] ≤ eTE[e−(τ1+···+τk)] ≤ eT ρk

and
P [min(τ1, . . . , τk) ≤ δ)] ≤ kδCǫ

From the locality of L, it follows that

πR
h (x,B(x, ǫ)c) = o(h)

Therefore

sup
x
PR

x,h

[

sup
0≤j≤n

|X((j + 1)h−X(jh)| ≥ ǫ

]

→ 0

as h→ 0. This is enough to control the oscillations. We can use the control on the modulus
of continuity to prove tightness. If PR

x is any limit it is a solution to the martingale problem
for LR. This agrees with L until th exit itme from BR the ball of radius R. Since there is
no explotion if R is large τR is large, is bigger than T , with probability nearly one and so
PR

x,h and Px,h are close and the limit of Px,h as h→ 0 is Px.

Finally to prove that µ is the invariant measure we will construct a Markov Chain
{πh(x, dy)}, for which µ is inavariant and which converges to {Px}. Given L, we construct
the resolvent

Πh = (I − hL)−1

on the range of Dh of bounded functions with two bounded derivatives under (I − hL).
The maximum principle guarantees that Πh is well defined and is positivity preserving.
We define a linear functional Λ on functions of two variables of the form

g(x, y) = v0(y) +
∑

i

ui(x)wi(y)

with u, w being bounded continuous functions and wi = vi − hLvi ∈ Dh, by

Λ(g) =

∫

v0(y)dµ(y) +
n

∑

i=1

∫

ui(x)vi(x)dµ(x)

Suppose Λ is nonnegative and we extend it as a non negative linear functional. Then both
the marginals of Λ are µ. [Note that we can take v1 = 1 and the remaining v as 0. Then
g(x, y) = u1(x)]. If we take the r.c.p.d πh(x, dy), µπh = µ and

πh(v − hLv) = v

for smooth v we have
1

h
(πhv − v) = πhLv → Lv

for v with compact support.
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Suppose g(x, y) ≥ 0. Then consider the function

inf
x

n
∑

i=1

ui(x)vi = Φ(v)

defined for v = (v1, . . . , vn) ∈ Rn. Φ is concave and

Φ(v(x) − t(Lv)(x))

is a convex function of t for all x. So is the integral

ψ(t) =

∫

Φ(v(x) − t(Lv)(x))dµ(x)

ψ′(0) = −
∫

∑

i

Φui
(v(x))(Lvi)(x)dµ(x) ≤

∫

[LΦ(v)](x)dµ(x) = 0

Therefore for h ≥ 0,

ψ(h) =

∫

Φ(v(x) − h(Lv)(x))dµ(x) ≤
∫

Φ(v(x))dµ(x)

We can approximate Φ by smooth convex functions. Denote vi − hLvi = wi. Then

∫

[v0(x) +
∑

ui(x)vi(x)]dµ(x) ≥
∫

[v0(x) + Φ(v(x))]dµ(x)

≥
∫

[v0(x) + Φ(w(x))]dµ(x)

But
[v0(y) + Φ(w(y)] = inf

x
[v0(y) +

∑

i

ui(x)wi(y)] = inf
x
g(x, y) ≥ 0
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