Let us return to our model. We have a solution of Kolmogorov’s forwrad equation
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where fx is the density with respect to the invariant measure give by exp[— > #(&;)]. We
saw that the Dirichlet form satisfies.
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If we denote the marginal in a block of length £ around = by fx +e(&1, - - ., &) and by fy<e
the average
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With a log Sobolev constant of £2, we can apply log Sobolev inequality on each hyperplane
> @i = La. If we write fy ee” > E) dg = Gy (da)py ¢(a, dE) and similarly e~ 22 ¢€) =
on.e(a)fin,e(a, d€)
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If we can prove a conditional version of Cramér’s Large deviation result, i.e. with A\ = h/(a),

and
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where C(6) > 0, then it is not hard to see that with ¢ = Ne,
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This will allow replacing averages like
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with a small e. The conditional version of Cramér’s theorem is not hard to prove.
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Let us start with i.i.d.r.v’s with density g(£). Let g, (£) be the density of % > &;. Then
gn(a) = exp[—nh(a) + o(n)]

is the density version of the Large deviation result. Let us take this for granted. We want
to compute
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Suppose we define
1
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normalized to be a probability distribution. Then the distribution of % >~ & under the new
distribution is given by a density g, ,(a) that will satisfy

Gn,p(a) = exp[—nh(p,a) + o(n)]

It is not hard to see that

Y(p,a) =logT(p) — h(p,a) + h(a)

and
h(p,a) = sup[fa — log M (p,0)]
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with

M(p,0) = /wmw%®%

Getting exponential error estimate is just the differentiability of 1(p,a) at p = 0 which is
obvious. Moreover
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with 6 = h/(a). Finally

000.0) = 377075 | P (e

with @ = h/(a). Finally let us prove the density version of Cramér’s theorem.
We write with gg(§) = ﬁe%g({) and 6 = 1/ (), so that
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Since now a is the mean, the density version of CLT yields
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Density version of CLT. It is sufficient to prove with mean 0 and variance 1
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It is not hard to get a bound of the form
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and for n >> 1,
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