
Let us return to our model. We have a solution of Kolmogorov’s forwrad equation

∂fN (t, ξ1, . . . , ξN)

∂t
= N2ANfN

where fN is the density with respect to the invariant measure give by exp[−
∑
φ(ξi)]. We

saw that the Dirichlet form satisfies.
∫ ∑

|(Di −Di+1)fN |2
fN

e−
∑

φ(ξi)dξ ≤ C

N

If we denote the marginal in a block of length ℓ around x by fN,xℓ(ξ1, . . . , ξℓ) and by f̄N<ℓ

the average

f̄N,ℓ =
1

N

∑

x

fN,x,ℓ

then the Dirichlet form

∫ ∑
1≤i≤ℓ−1 |(Di+1 −Di)f̄N,ℓ|2

f̄N,ℓ

e−
∑

φ(ξi)dξ ≤ Cℓ

N2

With a log Sobolev constant of ℓ2, we can apply log Sobolev inequality on each hyperplane
∑

i xi = ℓa. If we write f̄N,ℓe
−

∑
φ(ξi)dξ = ḠN,ℓ(da)ν̄N,ℓ(a, dξ) and similarly e−

∑
i
φ(ξi) =

φ̄N,ℓ(a)µ̄N,ℓ(a, dξ) ∫
H(ν̄N,ℓ(a, ·)|µ̄N,ℓ(a, ·))ḠN,ℓ(da) ≤ c

ℓ3

N2

If we can prove a conditional version of Cramér’s Large deviation result, i.e. with λ = h′(a),
and

F̄ (a) =
1

M(λ)

∫
eλξ−φ(ξ)F (ξ)dξ

P [| 1
n

∑

i

F (ξi) − F̄ (a)| ≥ δ| 1
n

∑
ξi = a] ≤ exp[−nC(δ)]

where C(δ) > 0, then it is not hard to see that with ℓ = Nǫ,

∫

| 1

n

∑
i
F (ξi)−F̄ (a)|≥δ

f̄N,ℓ(ξ)dξ ≤ c
(Nǫ)3

N3ǫ
= cǫ2

This will allow replacing averages like

1

N

∑
J(

x

N
)F (ξ)

with
1

N

∑
J(

x

N
)F̄ (

1

2Nǫ

∑

y:|y−x|≤Nǫ

ξy)

with a small ǫ. The conditional version of Cramér’s theorem is not hard to prove.

1



Let us start with i.i.d.r.v’s with density g(ξ). Let gn(ξ) be the density of 1
n

∑
ξi. Then

gn(a) = exp[−nh(a) + o(n)]

is the density version of the Large deviation result. Let us take this for granted. We want
to compute

lim
n→∞

1

n
logE[eρ

∑
i
F (ξi)|

∑

i

ξi = na] = ψ(ρ, a)

Suppose we define

gρ(ξ) =
1

T (ρ)
eρF (ξ)g(ξ)

normalized to be a probability distribution. Then the distribution of 1
n

∑
ξ under the new

distribution is given by a density gn,ρ(a) that will satisfy

gn,ρ(a) = exp[−nh(ρ, a) + o(n)]

It is not hard to see that

ψ(ρ, a) = log T (ρ) − h(ρ, a) + h(a)

and
h(ρ, a) = sup

θ

[θa− logM(ρ, θ)]

with

M(ρ, θ) =
1

T (θ)

∫
eρF (ξ)+θξg(ξ)dξ

Getting exponential error estimate is just the differentiability of ψ(ρ, a) at ρ = 0 which is
obvious. Moreover

ψρ(0, a) =
T ′(0)

T (0)
− hρ(0, a)

and

hρ(0, a) = −Mρ(0, θ)

M(0, θ)
=
T ′(0)

T (0)
− 1

M(0, θ)

∫
eθξF (ξ)g(ξ)dξ

with θ = h′(a). Finally

ψρ(0, a) =
1

M(0, θ)

∫
eθξF (ξ)g(ξ)dξ

with θ = h′(a). Finally let us prove the density version of Cramér’s theorem.
We write with gθ(ξ) = 1

M(θ)e
θξg(ξ) and θ = h′(ξ), so that

∫
ξgθ(ξ)dξ = a
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∫

ξ̄=a

g(ξ1) · · · g(ξn)dξ = M(θ)
n
e−na

∫

ξ̄=a

gθ(ξ1) · · · gθ(ξn)dξ

= M(θ)
n
e−nagn,θ(a)

Since now a is the mean, the density version of CLT yields

gn,θ(a) ≃
1√

2πnC(a)

Density version of CLT. It is sufficient to prove with mean 0 and variance 1

lim
n→infty

1

2π

∫
ĝ(

t√
n

)ne−itxdt→ 1√
2π
e−

x
2

2

It is not hard to get a bound of the form

|ĝ(t)| ≤ (1 + ct2)−c

and for n >> 1,

(1 + c
t2

n
)−nc ≤ (1 + c′t2)−1
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