Lecture 12.

Log-Sobolev Inequality. Let us consider on R the generator

$$
\mathcal{L}=\frac{1}{2} D_{x}^{2}+\frac{1}{2} b(x) D_{x}
$$

where $b(x)=\frac{\phi^{\prime}(x)}{\phi(x)}$. Clearly \mathcal{L} is self adjont with respect to the weight $\phi(x)$ and

$$
\mathcal{L} u=\frac{1}{2 \phi} D_{x} \phi(x) D_{x} u
$$

or

$$
\langle\mathcal{L} u, v\rangle=\int(\mathcal{L} u)(x) v(x) \phi(x) d x=-\frac{1}{2} \int u_{x} v_{x} \phi(x) d x
$$

We will take $\phi(x)=\exp [-\psi(x)]$ with a uniformly convex ψ, i.e $\psi_{x x} \geq c>0 . b=-\psi^{\prime}(x)$ and $b_{x} \leq-c<0$. We let $f(t, x) \geq 0 \in L_{1}(\phi d x)$ evolve according to the equation

$$
f_{t}(t, x)=(\mathcal{L} f)(t, x)
$$

Since \mathcal{L} is self adjoint $L^{*}=L$ with respect to the weight ϕ. We denote by

$$
H(t)=\int f(t, x) \log f(t, x) \phi(x) d x
$$

Then

$$
\frac{d H}{d t}=-\frac{1}{2} \int \frac{\left[f_{x}(t, x)\right]^{2}}{f(t, x)} \phi(x) d x
$$

We are interested in calculating

$$
\frac{d^{2} H(t)}{d t^{2}}=-\frac{d}{d t} \frac{1}{2} \int \frac{\left[f_{x}(t, x)\right]^{2}}{f(t, x)} \phi(x) d x
$$

which equals

$$
\frac{1}{2} \int \frac{\left[f_{x}(t, x)\right]^{2}}{[f(t, x)]^{2}}(\mathcal{L} f)(t, x) \phi(x) d x-\int \frac{f_{x}(t, x)}{f(t, x)}(\mathcal{L} f)_{x}(t, x) \phi(x) d x
$$

We note that

$$
(\mathcal{L} f)_{x}=\mathcal{L} f_{x}+\frac{1}{2} b(x) f_{x}
$$

Moreover

$$
\begin{aligned}
& \frac{1}{2} \int \frac{\left[f_{x}(t, x)\right]^{2}}{[f(t, x)]^{2}}(\mathcal{L} f)(t, x) \phi(x) d x \\
& \quad=\frac{1}{2}\left\langle\frac{f_{x}^{2}}{f^{2}}, \mathcal{L} f\right\rangle=\frac{1}{2}\left\langle\mathcal{L}\left(\frac{f_{x}^{2}}{f^{2}}\right), f\right\rangle \\
& \quad \geq\left\langle\frac{f_{x}}{f} \mathcal{L}\left(\frac{f_{x}}{f}\right), f\right\rangle=\left\langle\mathcal{L}\left(\frac{f_{x}}{f}\right), f_{x}\right\rangle=\left\langle\left(\frac{f_{x}}{f}\right), \mathcal{L} f_{x}\right\rangle
\end{aligned}
$$

Therefore

$$
\frac{d^{2} H(t)}{d t^{2}} \geq-\frac{1}{2} \int \frac{b_{x} f_{x}^{2}}{f} \phi(x) d x \geq \frac{c}{2} \int \frac{\left[f_{x}(t, x)\right]^{2}}{f(t, x)} \phi(x) d x=-c \frac{d H(t)}{d t}
$$

If we denote by $I(t)=-\frac{d H(t)}{d t}$, then $\frac{d I(t)}{d t} \leq-c I(t)$, providing $\int_{0}^{\infty} I(s) d s \leq \frac{1}{c} I(0)$. But

$$
H(0)=\int_{0}^{\infty} I(t) d t \leq \frac{1}{c} I(0)
$$

We have assumed $H(\infty)=0$. True for a dense set.
Suppose we are in R^{d} and we have a generator of the type

$$
\mathcal{L} u=\frac{1}{2 \phi} \nabla \cdot \phi C \nabla u
$$

with a positive definite symmetric C, (independent of x) which is self adjoint with respect to the weight $\phi(x)=e^{-\psi(x)}$. Then

$$
\begin{gathered}
H(t)=\int f(t, x) \log f(t, x) \phi(x) d x \\
I(t)=\frac{1}{2} \int \frac{\langle C \nabla f, \nabla f\rangle}{f} \phi d x
\end{gathered}
$$

The crucial step is to estimate

$$
\frac{d I(t)}{d t}=-\frac{1}{2}\left\langle\mathcal{L} f, \frac{\langle C \nabla f, \nabla f\rangle}{f^{2}}\right\rangle+\int \frac{\langle C \nabla \mathcal{L} f, \nabla f\rangle}{f} \phi d x
$$

and note that $\nabla \mathcal{L} f=\nabla \mathcal{L} f+(D b) \nabla f$. We need to bound

$$
\langle C \nabla f,(D b) C \nabla f\rangle \leq-c\langle C \nabla f, \nabla f\rangle
$$

In our particular context we are looking at R^{N-1} represented as the hyperplane $\sum_{i=1}^{N} x_{i}=$ $N m . C$ is the quadratic form

$$
\langle C u, u\rangle=\sum_{i=2}^{N}\left(u_{i}-u_{i-1}\right)^{2}
$$

$\widehat{\psi}$ is the restriction of $\sum_{i} \psi\left(x_{i}\right)$ to the hyperplane. $-D b$ is the Hessian of ψ. The matrix representing C is

$$
\left(\begin{array}{ccccccc}
1 & -1 & 0 & \cdots & 0 & 0 & 0 \\
-1 & 2 & -1 & \cdots & 0 & 0 & 0 \\
0 & -1 & 2 & \cdots & 0 & 0 & 0 \\
0 & 0 & -1 & \cdots & 0 & 0 & 0 \\
\cdots & & & \cdots & & & \cdots \\
\cdots & & & \cdots & & & \cdots \\
0 & 0 & 0 & \cdots & -1 & 2 & -1 \\
0 & 0 & 0 & \cdots & 0 & -1 & 1
\end{array}\right)
$$

It is not hard to see that $c=c_{N}=a N^{-2}$ where a is a lower bound on $\psi^{\prime \prime}(x)$.
Our density $f(x)$ on R^{N} is written as the superposition of densities $\mu_{m}=f_{m}(x) \lambda_{m}(d x)$ on the hyperplane relative to the conditionals λ_{m}, which are just $\pi \phi\left(x_{i}\right)$ normalized on the hyperplane.

$$
f(x) d x=\int \mu_{m}(x) d \nu(m)
$$

The entropy under control is

$$
\int H\left(\mu_{m} \mid \lambda_{m}\right) d \nu(m) \leq c N^{2} I(f)
$$

which is obtained on each hyperplane and integrated with respect to m.
Large deviation estimates. With respect to λ_{m} the probability

$$
\lambda_{m}\left[\left|\frac{1}{N} \sum g\left(x_{i}\right)-\widehat{g}(m)\right| \geq \delta\right]=\exp [-c(\delta) N]
$$

where

$$
\widehat{g}(m)=\frac{1}{M(\lambda)} \int g(x) e^{\lambda x} \phi(x) d x
$$

with $\lambda=\lambda(m)$. Note that $N=N \epsilon, I(f)=\frac{\epsilon}{N}$. Therefore

$$
\int H\left(\mu_{m} \mid \lambda_{m}\right) d \nu(m) \leq c N \epsilon^{3}
$$

Since $m=\bar{x}$, with respect to λ_{m} and μ_{m}, we have

$$
\mu_{m}\left[\left|\frac{1}{N} \sum g\left(x_{i}\right)-\widehat{g}(m)\right| \geq \delta\right] \leq c(\delta) \epsilon^{2}
$$

This estimate is valid uniformly over bounded set of values of m. Integrate w.r.t ν. Entropy controls integrability. For instance, since $\psi(x) \geq c x^{2}$, with $w(x)=\sqrt{1+x^{2}}$,

$$
\int \exp \left[\sum_{i=1}^{N} w\left(x_{i}\right)\right] e^{-\sum_{i=1}^{N} \psi\left(x_{i}\right)} d x \leq e^{C N}
$$

If $f(t, x)$ is the density at time t, then

$$
H(t)=\int f(t, x) \log f(t, x) \Pi \phi\left(x_{i}\right) d x \leq H(0) \leq C N
$$

The entropy inequality states

$$
\int F d \lambda \leq H(\lambda \mid \mu)+\log \left[\int e^{F} d \mu\right]
$$

Proof:

$$
\sup _{x}[x y-x \log x+x]=y e^{y}-y e^{y}+e^{y}=e^{y}
$$

Therefore

$$
\int F f d \mu \leq \int e^{F} d \mu+\int[f \log f-f] d \mu
$$

Since $\int f d \mu=1$, we can replace F by $F+c$ to get

$$
\int F f d \mu \leq \int e^{F+c} d \mu-c-1+\int f \log f d \mu=e^{c} \int e^{F} d \mu-c-1+H(\lambda \mid \mu)
$$

Minimize with respect to $c . \quad c=-\log \int e^{F} d \mu$. Provides control. In particular taking $F=k \mathbf{1}_{A}(x)$,

$$
k \lambda(A) \leq H(\lambda \mid \mu)+\log \left[e^{k} \mu(A)+(1-\mu(A)]\right.
$$

with $k=\log \frac{1}{\mu(A)}$, we get

$$
\lambda(A) \leq \frac{2+H(\lambda \mid \mu)}{\log \frac{1}{\mu(A)}}
$$

Convexity of $Q(f)=D(\sqrt{f})$ is an immediate consequence of the variational formula

$$
Q(f)=-\inf _{u>0} \int \frac{(\mathcal{L} u)(x)}{u(x)} f(x) d \mu
$$

