Lecture 12.

Log-Sobolev Inequality. Let us consider on R the generator

$$\mathcal{L} = \frac{1}{2}D_x^2 + \frac{1}{2}b(x)D_x$$

where $b(x) = \frac{\phi'(x)}{\phi(x)}$. Clearly \mathcal{L} is self adjoint with respect to the weight $\phi(x)$ and

$$\mathcal{L}u = \frac{1}{2\phi} D_x \phi(x) D_x u$$

or

$$\langle \mathcal{L}u, v \rangle = \int (\mathcal{L}u)(x) \, v(x) \, \phi(x) dx = -\frac{1}{2} \int u_x \, v_x \phi(x) dx$$

We will take $\phi(x) = \exp[-\psi(x)]$ with a uniformly convex ψ , i.e $\psi_{xx} \ge c > 0$. $b = -\psi'(x)$ and $b_x \le -c < 0$. We let $f(t,x) \ge 0 \in L_1(\phi dx)$ evolve according to the equation

$$f_t(t,x) = (\mathcal{L}f)(t,x)$$

Since \mathcal{L} is self adjoint $L^* = L$ with respect to the weight ϕ . We denote by

$$H(t) = \int f(t, x) \log f(t, x) \phi(x) dx$$

Then

$$\frac{dH}{dt} = -\frac{1}{2} \int \frac{[f_x(t,x)]^2}{f(t,x)} \phi(x) dx$$

We are interested in calculating

$$\frac{d^2H(t)}{dt^2} = -\frac{d}{dt}\frac{1}{2}\int \frac{[f_x(t,x)]^2}{f(t,x)}\phi(x)dx$$

which equals

$$\frac{1}{2} \int \frac{[f_x(t,x)]^2}{[f(t,x)]^2} (\mathcal{L}f)(t,x) \phi(x) dx - \int \frac{f_x(t,x)}{f(t,x)} (\mathcal{L}f)_x(t,x) \phi(x) dx$$

We note that

$$(\mathcal{L}f)_x = \mathcal{L}f_x + \frac{1}{2}b(x)f_x$$

Moreover

$$\frac{1}{2} \int \frac{[f_x(t,x)]^2}{[f(t,x)]^2} (\mathcal{L}f)(t,x) \phi(x) dx$$

$$= \frac{1}{2} \langle \frac{f_x^2}{f^2}, \mathcal{L}f \rangle = \frac{1}{2} \langle \mathcal{L}(\frac{f_x^2}{f^2}), f \rangle$$

$$\geq \langle \frac{f_x}{f} \mathcal{L}(\frac{f_x}{f}), f \rangle = \langle \mathcal{L}(\frac{f_x}{f}), f_x \rangle = \langle (\frac{f_x}{f}), \mathcal{L}f_x \rangle$$

Therefore

$$\frac{d^2 H(t)}{dt^2} \ge -\frac{1}{2} \int \frac{b_x f_x^2}{f} \phi(x) dx \ge \frac{c}{2} \int \frac{[f_x(t, x)]^2}{f(t, x)} \phi(x) dx = -c \frac{dH(t)}{dt}$$

If we denote by $I(t) = -\frac{dH(t)}{dt}$, then $\frac{dI(t)}{dt} \leq -cI(t)$, providing $\int_0^\infty I(s)ds \leq \frac{1}{c}I(0)$. But

$$H(0) = \int_0^\infty I(t)dt \le \frac{1}{c}I(0)$$

We have assumed $H(\infty) = 0$. True for a dense set.

Suppose we are in \mathbb{R}^d and we have a generator of the type

$$\mathcal{L}u = \frac{1}{2\phi} \nabla \cdot \phi C \nabla u$$

with a positive definite symmetric C, (independent of x) which is self adjoint with respect to the weight $\phi(x) = e^{-\psi(x)}$. Then

$$H(t) = \int f(t, x) \log f(t, x) \phi(x) dx$$

$$I(t) = \frac{1}{2} \int \frac{\langle C\nabla f, \nabla f \rangle}{f} \phi dx$$

The crucial step is to estimate

$$\frac{dI(t)}{dt} = -\frac{1}{2} \langle \mathcal{L}f, \frac{\langle C\nabla f, \nabla f \rangle}{f^2} \rangle + \int \frac{\langle C\nabla \mathcal{L}f, \nabla f \rangle}{f} \phi dx$$

and note that $\nabla \mathcal{L}f = \nabla \mathcal{L}f + (Db)\nabla f$. We need to bound

$$\langle C\nabla f, (Db)C\nabla f\rangle \leq -c\langle C\nabla f, \nabla f\rangle$$

In our particular context we are looking at R^{N-1} represented as the hyperplane $\sum_{i=1}^{N} x_i = Nm$. C is the quadratic form

$$\langle Cu, u \rangle = \sum_{i=2}^{N} (u_i - u_{i-1})^2$$

 $\widehat{\psi}$ is the restriction of $\sum_{i} \psi(x_i)$ to the hyperplane. -Db is the Hessian of ψ . The matrix representing C is

$$\begin{pmatrix} 1 & -1 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -1 & \cdots & 0 & 0 & 0 \\ \cdots & & & \cdots & & & \cdots \\ 0 & 0 & 0 & \cdots & -1 & 2 & -1 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{pmatrix}$$

It is not hard to see that $c = c_N = aN^{-2}$ where a is a lower bound on $\psi''(x)$.

Our density f(x) on R^N is written as the superposition of densities $\mu_m = f_m(x)\lambda_m(dx)$ on the hyperplane relative to the conditionals λ_m , which are just $\pi\phi(x_i)$ normalized on the hyperplane.

$$f(x)dx = \int \mu_m(x)d\nu(m)$$

The entropy under control is

$$\int H(\mu_m|\lambda_m)d\nu(m) \le cN^2 I(f)$$

which is obtained on each hyperplane and integrated with respect to m.

Large deviation estimates. With respect to λ_m the probability

$$\lambda_m \left[\left| \frac{1}{N} \sum g(x_i) - \widehat{g}(m) \right| \ge \delta \right] = \exp[-c(\delta)N]$$

where

$$\widehat{g}(m) = \frac{1}{M(\lambda)} \int g(x)e^{\lambda x} \phi(x) dx$$

with $\lambda = \lambda(m)$. Note that $N = N\epsilon$, $I(f) = \frac{\epsilon}{N}$. Therefore

$$\int H(\mu_m|\lambda_m)d\nu(m) \le cN\epsilon^3$$

Since $m = \bar{x}$, with respect to λ_m and μ_m , we have

$$\mu_m \left[\left| \frac{1}{N} \sum g(x_i) - \widehat{g}(m) \right| \ge \delta \right] \le c(\delta) \epsilon^2$$

This estimate is valid uniformly over bounded set of values of m. Integrate w.r.t ν . Entropy controls integrability. For instance, since $\psi(x) \geq cx^2$, with $w(x) = \sqrt{1+x^2}$,

$$\int \exp[\sum_{i=1}^{N} w(x_i)] e^{-\sum_{i=1}^{N} \psi(x_i)} dx \le e^{CN}$$

If f(t,x) is the density at time t, then

$$H(t) = \int f(t, x) \log f(t, x) \Pi \phi(x_i) dx \le H(0) \le CN$$

The entropy inequality states

$$\int F d\lambda \le H(\lambda|\mu) + \log\left[\int e^F d\mu\right]$$

Proof:

$$\sup_{x} [xy - x \log x + x] = ye^{y} - ye^{y} + e^{y} = e^{y}$$

Therefore

$$\int F f d\mu \le \int e^F d\mu + \int [f \log f - f] d\mu$$

Since $\int f d\mu = 1$, we can replace F by F + c to get

$$\int F f d\mu \le \int e^{F+c} d\mu - c - 1 + \int f \log f d\mu = e^c \int e^F d\mu - c - 1 + H(\lambda|\mu)$$

Minimize with respect to c. $c = -\log \int e^F d\mu$. Provides control. In particular taking $F = k \mathbf{1}_A(x)$,

$$k\lambda(A) \le H(\lambda|\mu) + \log[e^k\mu(A) + (1 - \mu(A))]$$

with $k = \log \frac{1}{\mu(A)}$, we get

$$\lambda(A) \le \frac{2 + H(\lambda|\mu)}{\log \frac{1}{\mu(A)}}$$

Convexity of $Q(f) = D(\sqrt{f})$ is an immediate consequence of the variational formula

$$Q(f) = -\inf_{u>0} \int \frac{(\mathcal{L}u)(x)}{u(x)} f(x) d\mu$$