Lecture 12.

Log-Sobolev Inequality. Let us consider on R the generator
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where b(x) = q;((mx)). Clearly L is self adjont with respect to the weight ¢(x) and
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We will take ¢(x) = exp[—t(x)] with a uniformly convex v, i.e ¥z, > ¢ > 0. b = —¢/(x)
and b, < —c < 0. We let f(t,z) > 0 € Li(¢dx) evolve according to the equation
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Since L is self adjoint L* = L with respect to the weight ¢. We denote by

or
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Then
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We are interested in calculating
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We note that 1
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Moreover
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Therefore
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If we denote by I(t) = —dlj—gt), then d{d—(tt) < —cl(t), providing [~ I(s)ds < 21(0). But

H(0) = /O T It < %1(0)

We have assumed H (00) = 0. True for a dense set.

Suppose we are in R? and we have a generator of the type

1
Lu = %V - pC'Vu

with a positive definite symmetric C, (independent of =) which is self adjoint with respect
to the weight ¢(x) = e ¥®). Then
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The crucial step is to estimate
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and note that VLf = VLf + (Db)V f. We need to bound
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In our particular context we are looking at RV ~! represented as the hyperplane Zf\il xr; =
Nm. C'is the quadratic form

(Cuu) = Y (us = wi)?

~

1 is the restriction of ). 1 (z;) to the hyperplane. —Db is the Hessian of 1. The matrix
representing C' is

1 -1 0 0 0 0
-1 2 -1 0 0 0
0 -1 2 0 O 0
0 0 -1 0 O 0
0 O 0 -1 2 -1
0 O 0 0 -1 1



It is not hard to see that ¢ = ¢y = aN 2 where a is a lower bound on %" ().
Our density f(z) on RY is written as the superposition of densities fi;, = fim (2)Am(dx)

on the hyperplane relative to the conditionals A,,, which are just m¢(x;) normalized on
the hyperplane.

f(x)dz = / b () (1)

The entropy under control is

/ H (fis M) (m) < eN2I(f)

which is obtained on each hyperplane and integrated with respect to m.

Large deviation estimates. With respect to A, the probability
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where
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with A = A(m). Note that N = Ne, I(f) = . Therefore
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/H(pm|/\m)dy(m) < cNé
Since m = z, with respect to A, and p,,, we have
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This estimate is valid uniformly over bounded set of values of m. Integrate w.r.t v. Entropy
controls integrability. For instance, since 1(x) > cx?, with w(z) = V1 + 22,
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N
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If f(t,x) is the density at time ¢, then

H(t) = /f(t,x) log f(t, x)lIp(z;)dx < H(0) < CN

The entropy inequality states

/Fd/\ < H(Mp) + log [/eFd,u}
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Proof:
suplzy — xlogx + x| = ye¥ —ye¥ + ¥ = ¢e¥

Therefore

[Fran< [eFan+ [(r1087 - ia

Since [ fdu =1, we can replace F' by F + ¢ to get

/Ffd,uS/eF+Cd,LL—c—l-i—/flogfdu:ec/eFd,u—c—1+H()\|,u)

Minimize with respect to ¢. ¢ = —log [ ef'du. Provides control. In particular taking
F = klA(x),
kA(A) < H(Ap) + logle* u(A) + (1 — p(A)]
with k = log ﬁ, we get
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Convexity of Q(f) = D(v/f) is an immediate consequence of the variational formula
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