
Lecture 11.

Scaling limits of Large Systems. Start with an example. Let {xi(t)} be a collection
of processes such that

dxi(t) = c[xi−1(t) − 2xi(t) + xi+1(t)]dt + γi(t)

where c > 0 and γi(t) = βi,i+1(t)−βi−1,i(t). This is an example of a system of interacting
processes. They are associated with sites on Z with interaction between neighbors. They
share their stuff with neighbors giving some thing proportional to the difference with some
noise.

dzi.i+1(t) = c(xi(t) − xi+1(t))dt + dβi,i+1(t)

dxi(t) = dzi−1,i(t) dt − dzi,i+1(t) dt

We want to look at averages over large blocks. More precisely

∑

i

J(
i

N
)xi(t) = 〈J, ξN(t)〉

where J is a smooth function with compact support.

d〈J, ξN(t)〉 = c〈∆NJ, ξN(t)〉 + 〈∇NJ, dβ(t)〉

If we speed up time by N2, then as N → ∞, if we denote the limit of ξN (t) by ξ(t), then

d〈J, ξ(t)〉 = c〈∆J, ξ(t)〉

because the noise is negligible. The variance of the noise is

1

N2

∑

i

[J(
i + 1

n
) − J(

i

N
)]2.N2 ≃

1

N
→ 0

Leading to the equation
dξ(t) = ∆ξ(t)dt

If initiall there is a weak law of large numbers of the form

〈J, ξN(0)〉 →

∫

J(q)m0(q)dq

then at time N t we have

〈J, ξN(t)〉 →

∫

J(q)m(t, q)dq

where m solves the heat equation

mt = c∆m; m(0, q) = m0(q)

1



Now the question is what happens when the equation

dxi(t) = c[xi−1(t) − 2xi(t) + xi+1(t)]dt + γi(t)

is replaced by

dxi(t) = [c(xi−1(t)) − 2c(xi(t)) + c(xi+1(t))]dt + γi(t)

where c(x) is nonlinear but like cx with c > 0. We can get as far as

d〈J, ξN(t)〉 = 〈∆NJ, ηN (t)〉 + 〈∇NJ, dβ(t)〉

where

〈J, ηN (t)〉 =
1

N

∑

i

J(
i

N
)c(xi(t))

The equations do not close. One has to find an expression for η(t) in

lim
N→∞

〈J, ηN (t)〉 = 〈J, η(t)〉

in terms of m(t) that appears as

lim
N→∞

〈J, ξN(t)〉 =

∫

J(q)m(t, q)dq

The answer is once again the ergodic theorem. If c(x) = φ′(x) for some nice φ then the
product measure

dµ = Πe−φ(xi)dxi

is seen to be invariant. Since c(x) + λ and c(x) can not be distinguished,

dµλ = Πe−φ(xi)+λxidxi

is invariant as well. The idea is that if the local mean is m then locally the variables xi

are distributed like the product measure µλ with λ chosen such that

1

k(λ)

∫

e−φ(x)+λxxdx = m

where

k(λ) =

∫ ∫

e−φ(x)+λxdx

is the normalization constant. It is easy to see that

m(λ) =
k′(λ)

k(λ)
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is nondecreasing in λ (Jensen’s inequality says that log k(λ) is convex in λ). It can be
inverted and λ = λ(m). It is easy to see integrating by parts, that

1

k(λ)

∫

c(x)e−φ(x)+λxdx = λ

since c(x) = −φ′(x). This suggests that

η(t, q) = λ(m(t, q))

giving us in the limit a nonlinear heat equation

mt = ∆λ(m(t, q))

Proof: The proof needs some assumptions and simplifications. We shall work on ZN the
integers modulo N , rather than Z. In the limit our space will be circle rather than the
line. So we do not have an infinite system, but only a large system of size N , i.e a diffusion
on RN . But x1 + x2 + · · ·+ xN is conserved. So we really have a one parameter family of
diffussions on hyperplanes 1

N

∑N

i=1 xi = m. The density

ΦN (x1, x2, . . . , xN ) = e
−

∑

N

i=1
φ(xi)

is invariant, but not ergodic. The conditional distributions given the mean are ergodic. Let
us start initially with a random configurations according to the density fN (x1, x2, . . . , xN ),
satisfying

∫

RN

log
fN (x1, x2, . . . , xN )

ΦN (x1, x2, . . . , xN)
fN (x1, x2, . . . , xN )dx1 · · ·dxN ≤ CN

for some C < ∞, independent of N . Then the distribution at time N2t has a density
fN (t, x1, x2, . . . , xN ) and the average density

f
T

N (x1, x2, . . . , xN) =
1

T

∫ T

0

fN (t, x1, x2, . . . , xN)dt

satisfies certain properties. The last property is the one we need, which is

lim sup
ǫ→0

lim sup
N→∞

∫

∣

∣

1

N

N
∑

i=1

J(
i

N
)[c(xi) − λ(xi,Nǫ)]

∣

∣f
T

N (x1, x2, . . . , xN)dx1dx2 · · ·dxN = 0

where

xi,Nǫ =
1

Nǫ

∑

j:|i−j|≤Nǫ

xj
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