Lecture 11.

Scaling limits of Large Systems. Start with an example. Let {x;(¢)} be a collection
of processes such that

dz;(t) = clwi—1(t) — 22(t) + zip1 ()] dt + 7 (¢)

where ¢ > 0 and ~;(t) = 5;i+1(t) — Bi—1,i(t). This is an example of a system of interacting
processes. They are associated with sites on Z with interaction between neighbors. They
share their stuff with neighbors giving some thing proportional to the difference with some
noise.

dziit1(t) = c(xi(t) — g1 (t))dt + dB; i11(t)
dJJZ(t) = dZi—l,i<t) dt — dzi,i—l—l(t) dt

We want to look at averages over large blocks. More precisely
> I (Gp)milt) = {7, En()

where J is a smooth function with compact support.
d{J,En (1)) = (AN J En (1)) + (Vv T, dB(1))
If we speed up time by N2, then as N — oo, if we denote the limit of £x(¢) by £(t), then
d{J,£(t)) = (AT, &(1))

because the noise is negligible. The variance of the noise is

%Z[J(izl) - J(%)]Q.Nz ~ % 0

Leading to the equation

de(t) = Ag(t)dt

If initiall there is a weak law of large numbers of the form

(J.Ex(0)) — / J(g)mo(q)dg

then at time N? we have

(1wl = [ Jam(t. o)
where m solves the heat equation
my = cAm;m(0,q) = mo(q)
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Now the question is what happens when the equation
dx;(t) = c[zi—1(t) — 2x;(t) + 2441 (t)]dt + i (¢)
is replaced by
dai(t) = e(zi1(t)) = 2c(zi(t)) + c(zipr(2))]dt + 7i(?)
where ¢(z) is nonlinear but like cx with ¢ > 0. We can get as far as
d(J,En (1)) = (AnJ, N (1)) + (VN J, dB(2))

where

1 i
Wone(0) = 5 32 I ()ele)
The equations do not close. One has to find an expression for 7(t) in

in terms of m(t) that appears as

Jim (7 6x(8) = / J(gymit, q)dg

The answer is once again the ergodic theorem. If ¢(z) = ¢'(x) for some nice ¢ then the

product measure
dp = He?@) 4y,

is seen to be invariant. Since ¢(x) + A and ¢(x) can not be distinguished,
duy = e~ @) +Azi go.

is invariant as well. The idea is that if the local mean is m then locally the variables x;
are distributed like the product measure py with A chosen such that

= —¢(x)+Ax _
k()\)/e xzdr =m

k() = / / e @A g

is the normalization constant. It is easy to see that

where




is nondecreasing in A\ (Jensen’s inequality says that logk(\) is convex in A). It can be
inverted and A = A(m). It is easy to see integrating by parts, that

1
w00 /c(m)e‘¢(x)+>‘xda: =

since ¢(x) = —¢'(x). This suggests that

n(t,q) = AMmf(t, q))

giving us in the limit a nonlinear heat equation

my = AX(m(t, q))

Proof: The proof needs some assumptions and simplifications. We shall work on Zy the
integers modulo N, rather than Z. In the limit our space will be circle rather than the
line. So we do not have an infinite system, but only a large system of size N, i.e a diffusion
on RN. But 1 + x3 + - - -+ an is conserved. So we really have a one parameter family of
diffussions on hyperplanes % vazl x; = m. The density

N
(I)N(Slh,:llz, .. .,wN) —e Zi:l ¢(zq)

is invariant, but not ergodic. The conditional distributions given the mean are ergodic. Let
us start initially with a random configurations according to the density fy(x1,z2,...,ZN),
satisfying

/ 10g fN(f131,f132, i ”,xN) fN(l’l,QZQ,. . .,CL’N>d{E1 . 'd{EN § CN
RN (I)N(xl,l‘g,...,xj\]>

for some C' < oo, independent of N. Then the distribution at time N2t has a density
fn(t,x1,x9,...,2N) and the average density

1 T
fN(l‘l,ZEQ,...,CL’N):T/ fN(t,xl,l’Q,...,l‘N)dt
0

satisfies certain properties. The last property is the one we need, which is

N :

. . 1 ) _ —T

hmsuphmsup/‘ﬁ g J(N)[c(aji)—)\(a:i’Ne)HfN(xl,a:Q,...,xN)dxldxz...da:N =0
i=1

e—0 N—oo

where
_ 1
TiNe = m E Zj

j:li—j|<Ne



