
Lecture 6.

More on Localization:

Suppose on the space C[[0, T ], Rd],Ft, P ] we have a stopping time τ and a family
Qτ(ω),ω of measures on C[[τ(w), T ], Rd] such that

P
[
ω : Qτ(ω),ω[y(·) : y(τ(ω)) = x(τ(ω), ω)] = 1

]
= 1

i.e. with probability 1 the Q-paths start where the P -paths ended. The we can define a
measure P̂ on C[[0, T ], Rd],Ft] such that P = P̂ on Fτ and the r.c.p.d of P̂ given Fτ is

Qτ(ω),ω on Fτ(ω)
T for almost all ω w.r.t. P . It is routine to do it. For instance

P̂ [x(t) ∈ A] = P [{x(t) ∈ A} ∩ {τ ≥ t}] +

∫

τ<t

Qτ(ω),ω[x(t) ∈ A]P (dω)

If X(t) is a martingale with respect to Qτ(ω),ω for t ≥ τ(ω) [ for almost all ω with respect
to P ] and x(τ ∧t) is a martingale with respect to P , then X(t) is a martingale with respect

to P̂ . To prove it we write for A ∈ Fs and t > s,
∫

A

X(t)dP̂ =

∫

A∩{τ(ω)≥t}

X(t)dP̂ +

∫

A∩{s≤τ(ω)<t}

X(t)dP̂ +

∫

A∩{τ(ω)<s}

X(t)dP̂

=

∫

A∩{τ(ω)≥t}

X(t)dP̂ +

∫

A∩{s≤τ(ω)<t}

X(τ(ω))dP̂ +

∫

A∩{τ(ω)<s}

X(s)dP̂

=

∫

A∩{τ(ω)≥t}

X(t)dP +

∫

A∩{s≤τ(ω)<t}

X(τ(ω))dP +

∫

A∩{τ(ω)<s}

X(s)dP̂

=

∫

A∩{s≤τ(ω)}

X(τ(ω) ∧ t)dP +

∫

A∩{τ(ω)<s}

X(s)dP̂

=

∫

A∩{s≤τ(ω)}

X(τ(ω) ∧ s)dP +

∫

A∩{τ(ω)<s}

X(s)dP̂

=

∫

A∩{s≤τ(ω)}

X(s)dP̂ +

∫

A∩{τ(ω)<s}

X(s)dP̂

=

∫

A

X(s)dP̂

We can piece martingales together and piece measures together. We can also take measures
apart by conditioning.

Theorem. (from Harmonic analysis). Conside the solution

u(s, x) =

∫ T

s

g(s, x, t, y)f(t, y)dtdy

of

us +
1

2
∆u + f(s, x) = 0; u(T, x) = 0
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Then if 1 < p < ∞,
‖Dxi

Dxj
u‖p ≤ c(p, d)‖f‖p

If p ≥ p(d), then
‖u|‖∞ ≤ Cp‖f‖p

One can then solve

us +
1

2

∑

i,j

[δi,j + ǫi,j(s, x)]Dxi
Dxj

u + f(s, x) = 0; u(T, x) = 0

by perturbation, if ǫi,j(s, x) are all uniformly small. The solution will be in W 1,2
P . The

bound on u∞ allows us to prove an apriori bound

EP

[ ∫ T

s

|f(t, x(t))|dt

]
≤ Cp‖f‖p

for any stochastic integral of the form

x(t) = x +

∫
e(τ, ω)dβ(τ)

with
|(e e∗)i,j − δi,j | ≤ ǫ

for samll enough ǫ.

Step 1.

(Ds +
1

2
∆ + E)−1 = (Ds +

1

2
∆)−1[I + E(Ds +

1

2
∆)−1]−1

If ‖E(Ds + 1
2
∆)−1‖ < 1 from Lp → Lp the perturbation works.

Step 2. If x(t) is a stochastic integral of a simple function then the bound is valid with
some constant if p ≥ p(d). By Itô’s formula, for

u(s, x) =

∫ T

s

g(s, x, t, y)f(t, y)dtdy

we get for any stochastic integral x(t) =
∫

edβ,

u(s, x) = E

[∫ T

0

[f(t, x(t)) + c(t, x(t))]dt

]

or

E

[ ∫ T

0

f(t, x(t))dt

]
= u(s, x)− E

[∫ T

0

c(t, x(t))dt

]
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Taking the supremum over all f with ‖f‖p ≤ 1,

sup
f :‖f‖p≤1

|E
[∫ T

0

f(t, x(t))dt

]
| ≤ Cp +

ǫd2

2
c(p, d) sup

f :‖f‖p≤1

|E
[∫ T

0

f(t, x(t))dt

]
|

If ǫ << 1 we are done! With localization and Girsanov we have unique solutions to the
martingale problem provided {ai,j(t, x)} are bounded, continuous and positive definite and
{bj(s, x)} are bounded and measurable.

Estimates on Exit times and explosions. Let (Ω,Ft, P, x(t, ω), a(t, ω), b(t, ω) be a
solution to a martingale problem starting from x(0) = 0 with [a(t, ω), b(t, ω)] satisfying

∑

i,j

|ai,j(t, ω)|+
∑

j

‖bj(t, ω)‖2 ≤ A[ǫ2 + ‖x(t)‖2]

for some ǫ > 0 and A < ∞. Then the function

u(x) = [ǫ2 + ‖x‖2]k

satisfies
1

2

∑

i,j

ai,j(t, ω)uxi,xj
(x(t)) +

∑

j

bj(t, ω)uxj
(x(t)) ≤ Ck2u(x)

where C depends only on A. In particular

e−Ck2tu(x(t))

is a supermartingale. If τℓ is the exit time from the ball of radius ℓ, we have

E[e−Ck2τℓ ] ≤ ǫ2k

(ǫ2 + ℓ2)k

and

P [τℓ ≤ t] ≤ ǫ2keCk2t

(ǫ2 + ℓ2)k

Fixing ǫ = 1, k = 1 and letting ℓ → ∞ we see that quadratic bound on a and linear bound
on b, is sufficient to prevent explosion. On the other hand if we fix ℓ and ǫ → 0, we can
afford to pick k large and get an estimate of the form

P [τℓ ≤ t] ≤ e−
(log ℓ

ǫ
)2

Ct

provoded ℓ > ǫ. This quantifies uniqueness under Lipschitz condition. More on this later.
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Large Deviations.

Let Pǫ the Wiener measure with variance ǫmin(s, t) or x(t) =
√

ǫβ(t). On C[[0, T ], Rd

Pǫ → δ0 the delta function at the path x(t) ≡ 0. If A is a closed and 0 /∈ A, Pǫ(A) → 0.
How fast?

Theorem. For A closed

lim sup
ǫ→0

ǫ log Pǫ[A] ≤ − inf
f(0)=0
f(·)∈A

1

2

∫ T

0

‖f ′(t)‖2dt = −I(A)

and for G open

lim inf
ǫ→0

ǫ log Pǫ[G] ≥ − inf
f(0)=0
f(·)∈G

1

2

∫ T

0

‖f ′(t)‖2dt = −I(G)

Proof: Let us denote by xn(t) the piecewise linear version of x(t) interpolated at { jT
N
}.

Then

Un =

∫ T

0

‖x′
n(t)‖2dt =

n

T

n∑

j=1

[x(
jT

n
) − x(

(j − 1)T

N
)]2

is distributed like ǫχ2 with n degrees of freedom.

Pǫ[Un ≥ ℓ] =
1

2
n
2 Γ(n)

∫ ∞

ℓ
ǫ

e−
u
2 u

n
2 −1du

Therefore for fixed n, ℓ

lim sup
ǫ→0

ǫ log Pǫ[Un ≥ ℓ] ≤ − ℓ

2

On the other hand for fixed δ

Pǫ[ sup
t∈[0,T ]

‖xn(t) − x(t)‖ ≥ δ] ≤ ne−
nδ2

2ǫT

Since
Pǫ[A] ≤ Pǫ[xn(·) ∈ Aδ] + Pǫ[‖xn(·) − x(·)‖ ≥ δ]

we have

lim sup
ǫ→0

ǫ log Pǫ[A] ≤ max{−I(Aδ),−nδ2

2T
}

Let n → ∞ and then δ → 0. Here Aδ = ∪f∈AB(f, δ). For the lower bound let f be a
smooth function with f(0) = 0. It is enough to show that for such functions, for any δ > 0,

lim inf
ǫ→0

ǫ log Pǫ[B(f, δ)] ≥ −1

2

∫ T

0

‖f ′(t)‖2dt
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By trnaslation forrmula for Browninan motion (Girsanov) in this context,

Pǫ[B(f, δ)] =

∫

B(0,δ)

exp[−1

ǫ

∫ T

0

f ′(t)dβ(t) − 1

2ǫ

∫
‖f ′(t)‖2dt]dPǫ

= e
− 1

2ǫ

∫
T

0
‖f ′(t)‖2dt

∫

B(0,δ)

exp
[
− 1

ǫ

∫ T

0

f ′(t)dβ(t)
]
dPǫ

≥ e
− 1

2ǫ

∫
T

0
‖f ′(t)‖2dt

Pǫ[B(0, δ)]

= e
− 1

2ǫ

∫
T

0
‖f ′(t)‖2dt

[1 + o(1)]

by Jensen’s inequlaity, the symmetry of Brownian motion and the convergence of Pǫ to δ0

as ǫ → 0.

Brownian motion with a drift.

Consider now the process corresponding to

ǫ

2
∆+ < b(x),∇ >

i.e solution of

x(t) = x +

∫ t

0

b(x(s))ds + y(t)

where y(·) has distribution Pǫ. Qx,ǫ satisfies a similar Large deviation theorem, with

Ix,b(A) = inf
f(0)=x

f(·)∈A

1

2

∫ T

0

‖f ′(t) − b(f(t))‖2dt

Assuming that b is Lipschitz the proof is just the observation that the map y(·) → x(·) is
a continupus map of C[[0, T ]; Rd] into itself.

The exit problem.

Consider a domain G and a vector field b with a globally stable fixed point in G, to
which all of G is attracted. If we start the process corresponding to

Lǫ =
ǫ

2
∆+ < b(x),∇ >

from the unique equilibrium point, where and how will the path exit for small but positive
ǫ? For ǫ = 0, the path does not exit. So it is going to take a long time for the process
corresponding to small ǫ. Think of it as swimming against the current to get out of G.
If you are tired it is no use waiting to catch your breath, because you have to fight the
current to stay where you are unless you are at the equlibrium. You can always coast
down and rest. Eventually you make a trip with enough energy to make it all the way
through. So the bahavior of the path consists of innumerable number of failed attempts
where it goes some distance, only to be dragged back to the equlibrium. This will take a
long time of order exp C

ǫ
, then finally a quick getaway, making a beeline to the boundary

in time that is only of order 1. The path that takes the particle out is the most efficient
path. (Intelligent design?)
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