
So far we have defined stochastic integrals with respect to processes x(t) that have
continuous paths and have certain martingales associated with them. (Ω,Ft, P ), x(t, ω) :
Ω × [0, T ] → Rd, b(t, ω) : Ω × [0, T ] → Rd, a(t, ω) : Ω × [0, T ] → S+

d , progressively
measurable and x(t, ω) is continuous a.e. If a and b are uniformly bounded, then we saw
that the stochastic integrals

ξ(t) =

∫ t

0

< σ(s, ω), dx(s) >

can be defined and is an almost surely continuous process Ω × [0, T ] → Rn provided
σ : Ω × [0, T ] → Rn ⊗ Rd is progressivley measurable and bounded. The parameters of ξ

can be calculated according to the rules for computing means and variances under linear
transformations. If x(·) ∈ [b, a] and dξ = σdx, then ξ ∈ [σb, σaσ∗]. Actaully, the class of
processes can cover [b, a] with the property

∫ T

0

|b(s, ω)|ds < ∞ a.e.

and
∫

Tr a(s, ω)ds < ∞ a.e.

Instead of Martingales, the expressions will be local martingales. x(t) is a local martingale
if there are stopping times τn ↑ ∞ such that x(τn∧ t) is a martingale for every n. Example
two dimesional Brownian motion. ξ(t) = log r(t)

log r(t) = log r(0) +

∫ t

0

<
x(s)

r2(s)
, dx(s) >

The trouble comes from 0. If τn = {inf t : r(t) ≤ 1

n
}, then ξ(τn∧t) is seen to be a martingle.

ξ is not. It is easy to see that E[ξ(t)] → ∞ as t → ∞. A bounded local martingale is a
martingale. A nonnegative local martingale is a supermartingale. Itô’s formula holds very
generally, because it is an almost sure statement.

Stochastic Differential Equations.

Given b(t, x) and σ(t, x) and a Brownian motion β(t) and ξ(ω) ∈ Fs, solve for t ≥ s,

dx(t) = b(t, x(t))dt + σ(t, x(t))dβ(t); x(s) = ξ(ω)

Can assume that s = 0 and ξ(ω) = x0. Define iteratively

xn+1(t) = x0 +

∫ t

0

b(xn(s))ds +

∫ t

0

< σ(xn(s)), dβ(s) >

Assume that σ and b are bounded and unifomly Lipshitz in x with a Lipshitz constant A.
Then, fixing a time interval [0, T ],

xn+1(t) − xn(t) =

∫ t

0

[b(xn(s)) − b(xn−1(s))]ds +

∫ t

0

< σ(xn(s)) − σ(xn−1(s)), dβ(s) >

1



Denoting by ∆n(t) = E[sup0≤s≤t |xn(s) − xn−1(s)|
2], we have, from Doob’s inequality

∆n+1(t) ≤ 2TA2

∫ t

0

∆n(s)ds + 8

∫ t

0

∆n(s)ds ≤ C(T )

∫ t

0

∆n(s)ds

By induction

∆n(t) ≤
C(T )ntn

n!

Therefore for almost all ω, x(t) = limn→∞ xn(t), exists uniformly in t, and provides a
solution of

x(t) = x0 +

∫ t

0

b(s, x(s))ds +

∫ t

0

< σ(s, x(s)), dβ(s) >

It is unique. If x(t), y(t) are two solutions, then ∆(t) = E[|x(t)− y(t)]2] satisfies

∆(t) ≤ C(T )

∫ t

0

∆(s)ds

and is 0. Clearly x(·) ∈ [b(s, x(s, ω)), a(s, x(s, ω))] with a = σσ∗. One can easily verify
that x(t) is a Markov process, in fact a strong Markov process. The reason is that we have
a ”black box”, we input xs and Brownian increments and the output is x(t) for t ≥ s.
Since the Brownian increments β(t)− β(s) are independent of Fs, we only need the value
of x(s, ω) and the actual ω is unimportant. That is really the Markov property. σ(s, x)
is not unique. One can change σ′(s, x) = σ(s, x)U(s, x) where U is an orthogonal matrix.
The σσ∗ = σ′σ′∗. dβ′(s) = U∗(s, x(s))dβ(s) defines another Brownian Motion. Therefore
the two solutions have the same distribution.

Of course we can start with a solution on some (Ω,Ft, P ) where both x and β are
given and are related by

x(t) = x(0) +

∫ t

0

b(s, x(s))ds +

∫ t

0

< σ(s, x(s)), dx(s) >

If b,σ are Lipshitz then x is measurable with respect to Brownian σ-field and is the same
as the solution constructed earlier. Otherwise it is not clear. Such solutions are the same
as solutions to the Martingale problem. Given (Ω,Ft, P ), [b, a] and x, and any choice of σ

with σσ∗ = a, there is a Brownian Motion β such that

dx = bdt + σdβ

If we assume that a is uniformly positive definite then we can define β as

β(t) =

∫ t

0

σ−1(s, x(s))[dx(s)− b(s, x(s))ds]

It is easy to check that β ∈ [0, I], because σ−1aσ−1 ∗ = I and

dx = σdβ + bdt
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The problem is when a can be degenerate. Then we have to go outside to find our Brownian
motion. For instance x(t) ≡ 0 coreesponds to a = b = 0 and there is no Brownian motion
on the space where there is only the zero path with probability 1. But we can take any
Brownian motion and say

dx = 0 = 0 dβ

But we should use the new Brownian only we need it. This is done in two steps. First build
a new Brownian motion by taking a product with Wiener space. Now we have a space
withx(t), β(t) corresponding to [(b(s, ω), 0), (a(s, ω), I)]. Let Q(s, ω) be the orthogonal
projection on to the range of a(s, ω). If σσ∗ = a, then the range of σ is the same as the
range of a and σ−1Q is well defined. We can define a new Brownian motion β′(t) by

β′(t) =

∫ t

0

σ−1(s, ω)Q(s, ω)[dx(s)− b(s, ω)ds] +

∫ t

0

[I − Q(s, ω)]dβ(s)

then
σ−1QaQ∗σ−1 ∗ + I − Q = I

and
dx = σdβ′ + b dt

Finally there us uniqueness theorem. If for some σ uniqueness holds in the sense that when
ever x(t), y(t) are two solutions on any (Ω,Ft, P, β(·)) of

x(t) = x0 +

∫ t

0

b(s, x(s))ds +

∫ t

0

< σ(s, x(s)), dβ(s) >

y(t) = x0 +

∫ t

0

b(s, y(s))ds +

∫ t

0

< σ(s, y(s)), dβ(s) >

it follows that x(t) ≡ y(t), then there is only one solution to the martingale problem for
[b, a] starting from x. The proof depends on a construction. Given P1, P2, [a, b], x, σ, i.e
two solutions to the martingale problem for [b, a] from the same starting point x0 and
a σ satisfying σσ∗ = a, we will construct (Ω,Ft, x(·), y(·), β(·)) such that x and y are
solutions with the same b, σ and the distribution of x(t) is P1 and that of y(t) is P2. Sinec
x(t) ≡ y(t), P1 = P2. the construction is staright forward. First construct x(t), β(t) so
that

dx(t) = σ(t, x(t))dβ(t) + b(t, x(t))dt

This will produce a joint distribution of β(·) and x(·) we write this as P (dw)Q1
w(dω1),

the marginal of Brownian Motion and the conditional of x(·) given the Brownian motion.
Similarly for y, P (dw)Q2

w(dω2). Now we can put all three x, y, β on the same space
aligning the Brownian trajectories, i.e. take the measure P (dw)Q1

w(dω1)⊗Q2
w(dω2). Make

the processes x, y conditionally independent given β. One verifies that now we have two
solutions on the same space.

Girsanov’s formula.
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If b(t, x) is bounded and a(t, x) be bounded and uniformly positive definite. P a
solution to the martingale problem for [0, a] starting from x.

exp

[
∫ t

0

< e(s, x(s)), dx(s) > −
1

2

∫

< e(s, x(s)), a(s, x(s))e(s, x(s)) > ds

]

is a martingale. Choose e(s, x(s)) = θ + a−1(s, x(s))b(s, x(s)).

exp

[
∫ t

0

< θ + a−1(s, x(s))b(s, x(s)), dx(s) >

−
1

2

∫

< θ + a−1(s, x(s))b(s, x(s)), a(s, x(s))[θ + a−1(s, x(s))b(s, x(s))] > ds

]

is a martingale for every θ ∈ Rd. This simplifies to

exp

[

< θ, x(t) − x > +

∫ t

0

< a−1(s, x(s))b(s, x(s)), dx(s) >

−

∫ t

0

< θ, b(s, x(s)) > ds −
1

2

∫ t

0

< θ, a(s, x(s))θ > ds

−
1

2

∫ t

0

< b(s, x(s)), a(s, x(s))[a−1(s, x(s))b(s, x(s))] > ds

]

= exp

[
∫ t

0

< a−1(s, x(s))b(s, x(s)), dx(s) >

−
1

2

∫ t

0

< b(s, x(s)), a(s, x(s))[a−1(s, x(s))b(s, x(s))] > ds

+ < θ, x(t)− x > −

∫ t

0

< θ, b(s, x(s)) > ds

−
1

2

∫ t

0

< θ, a(s, x(s))θ > ds

]

= R(t, ω)Y (θ, t, ω)

If we set θ = 0 then Y = 1 and R(t, ω) is a martingale. This defines a measure Q by
dQ = RdP and with respect to Q, Y (θ, t, ω) are martingales. In other words Q is a
solution for [b, a]. The steps are reversible so that there is a one to one correspondence
between solutions of [b, a] and [0, a]. Existence or uniqueness for one implies the same for
the other.

Warning. If b is unbounded R may not be a martingale but only a supermartingale. This
means that the paths explode and the total mass of Q is less than 1. In fact then

Q[τ∞ > t] =

∫

R(t, ω)dP
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Random Time Changes. On the space [C[0,∞]; X we define a family of transforma-
tions. Given a function V (x) : X → R which is meausrable and satisfies 0 < c1 ≤ V (x) ≤
c2 < ∞, we define (stopping) times τt by

∫ τt

0

V (x(s))ds = t

and the transformation ΦV : x(·) → y(·) by

y(t) = x(τt)

It is not hard to check that

ΦV ◦ ΦU = ΦU ◦ ΦV = ΦUV

If P is a solution to the martingale problem for L which is time homogeneous, then Q = Φ−1

U

is seen to be solution for 1

V
L.

∫ τt

0

g(x(s))ds =

∫ t

0

g(y(s))

V (y(s))
ds

Since τt are stopping times Doob’s stopping theorem applies. Since we can go back and
forth existence or uniqueness for L is equivalent to the same for 1

V
L. In patitcular in d = 1

we can go from [0, 1] to any [b, a] with a bounded b and a bounded above and below by
random time change and Girsanov.

PDE Methods.

If a is bounded and uniformly elliptic, b is bounded and they all satisfy Hölder condi-
tions in t and x, then the PDE

ut +
1

2

∑

ai,j(t, x)ui,j +
∑

bj(t, x)uj = 0; u(T, x) = f(x)

has a classical solution, implying that the solutions to the martingale problem are unique.
If we drop the assumption of Hölder continuity and assume only that a is continuous, then
there are solutions in Sobolev spaces W 1,2

p . Then one has to show that for any solution to
the martingale problem the functional

Λ(f) = EP [

∫ T

0

f(s, x(s))ds]

is bounded in Lp. This can be done and implies uniquenss. Note that by Girsanov we can
assume b = 0.

Localization.

We say that a solution to the martingale problem starting from x is unique untill
the exit time τG from G ∋ x, if any two solutions starting from x agree on FτG

. The
localization principle says that if [a, b] is such that for every x there is a neighborhood G,
such that any two solutions starting from x agree until the exit time from G, then there
is atmost one solution. This means that for given coefficients we can prove uniqueness by
different methods at different points.
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