So far we have defined stochastic integrals with respect to processes $x(t)$ that have continuous paths and have certain martingales associated with them. $\left(\Omega, \mathcal{F}_{t}, P\right), x(t, \omega)$: $\Omega \times[0, T] \rightarrow R^{d}, b(t, \omega): \Omega \times[0, T] \rightarrow R^{d}, a(t, \omega): \Omega \times[0, T] \rightarrow S_{d}^{+}$, progressively measurable and $x(t, \omega)$ is continuous a.e. If a and b are uniformly bounded, then we saw that the stochastic integrals

$$
\xi(t)=\int_{0}^{t}<\sigma(s, \omega), d x(s)>
$$

can be defined and is an almost surely continuous process $\Omega \times[0, T] \rightarrow R^{n}$ provided $\sigma: \Omega \times[0, T] \rightarrow R^{n} \otimes R^{d}$ is progressivley measurable and bounded. The parameters of ξ can be calculated according to the rules for computing means and variances under linear transformations. If $x(\cdot) \in[b, a]$ and $d \xi=\sigma d x$, then $\xi \in\left[\sigma b, \sigma a \sigma^{*}\right]$. Actaully, the class of processes can cover $[b, a]$ with the property

$$
\int_{0}^{T}|b(s, \omega)| d s<\infty \text { a.e. }
$$

and

$$
\int \operatorname{Tr} a(s, \omega) d s<\infty \text { a.e. }
$$

Instead of Martingales, the expressions will be local martingales. $x(t)$ is a local martingale if there are stopping times $\tau_{n} \uparrow \infty$ such that $x\left(\tau_{n} \wedge t\right)$ is a martingale for every n. Example two dimesional Brownian motion. $\xi(t)=\log r(t)$

$$
\log r(t)=\log r(0)+\int_{0}^{t}<\frac{x(s)}{r^{2}(s)}, d x(s)>
$$

The trouble comes from 0 . If $\tau_{n}=\left\{\inf t: r(t) \leq \frac{1}{n}\right\}$, then $\xi\left(\tau_{n} \wedge t\right)$ is seen to be a martingle. ξ is not. It is easy to see that $E[\xi(t)] \rightarrow \infty$ as $t \rightarrow \infty$. A bounded local martingale is a martingale. A nonnegative local martingale is a supermartingale. Itô's formula holds very generally, because it is an almost sure statement.

Stochastic Differential Equations.

Given $b(t, x)$ and $\sigma(t, x)$ and a Brownian motion $\beta(t)$ and $\xi(\omega) \in \mathcal{F}_{s}$, solve for $t \geq s$,

$$
d x(t)=b(t, x(t)) d t+\sigma(t, x(t)) d \beta(t) ; x(s)=\xi(\omega)
$$

Can assume that $s=0$ and $\xi(\omega)=x_{0}$. Define iteratively

$$
x_{n+1}(t)=x_{0}+\int_{0}^{t} b\left(x_{n}(s)\right) d s+\int_{0}^{t}<\sigma\left(x_{n}(s)\right), d \beta(s)>
$$

Assume that σ and b are bounded and unifomly Lipshitz in x with a Lipshitz constant A. Then, fixing a time interval $[0, T]$,

$$
x_{n+1}(t)-x_{n}(t)=\int_{0}^{t}\left[b\left(x_{n}(s)\right)-b\left(x_{n-1}(s)\right)\right] d s+\int_{0}^{t}<\sigma\left(x_{n}(s)\right)-\sigma\left(x_{n-1}(s)\right), d \beta(s)>
$$

Denoting by $\Delta_{n}(t)=E\left[\sup _{0 \leq s \leq t}\left|x_{n}(s)-x_{n-1}(s)\right|^{2}\right]$, we have, from Doob's inequality

$$
\Delta_{n+1}(t) \leq 2 T A^{2} \int_{0}^{t} \Delta_{n}(s) d s+8 \int_{0}^{t} \Delta_{n}(s) d s \leq C(T) \int_{0}^{t} \Delta_{n}(s) d s
$$

By induction

$$
\Delta_{n}(t) \leq \frac{C(T)^{n} t^{n}}{n!}
$$

Therefore for almost all $\omega, x(t)=\lim _{n \rightarrow \infty} x_{n}(t)$, exists uniformly in t, and provides a solution of

$$
x(t)=x_{0}+\int_{0}^{t} b(s, x(s)) d s+\int_{0}^{t}<\sigma(s, x(s)), d \beta(s)>
$$

It is unique. If $x(t), y(t)$ are two solutions, then $\left.\Delta(t)=E[\mid x(t)-y(t)]^{2}\right]$ satisfies

$$
\Delta(t) \leq C(T) \int_{0}^{t} \Delta(s) d s
$$

and is 0 . Clearly $x(\cdot) \in[b(s, x(s, \omega)), a(s, x(s, \omega))]$ with $a=\sigma \sigma^{*}$. One can easily verify that $x(t)$ is a Markov process, in fact a strong Markov process. The reason is that we have a "black box", we input x_{s} and Brownian increments and the output is $x(t)$ for $t \geq s$. Since the Brownian increments $\beta(t)-\beta(s)$ are independent of \mathcal{F}_{s}, we only need the value of $x(s, \omega)$ and the actual ω is unimportant. That is really the Markov property. $\sigma(s, x)$ is not unique. One can change $\sigma^{\prime}(s, x)=\sigma(s, x) U(s, x)$ where U is an orthogonal matrix. The $\sigma \sigma^{*}=\sigma^{\prime} \sigma^{\prime *} . d \beta^{\prime}(s)=U^{*}(s, x(s)) d \beta(s)$ defines another Brownian Motion. Therefore the two solutions have the same distribution.

Of course we can start with a solution on some $\left(\Omega, \mathcal{F}_{t}, P\right)$ where both x and β are given and are related by

$$
x(t)=x(0)+\int_{0}^{t} b(s, x(s)) d s+\int_{0}^{t}<\sigma(s, x(s)), d x(s)>
$$

If b, σ are Lipshitz then x is measurable with respect to Brownian σ-field and is the same as the solution constructed earlier. Otherwise it is not clear. Such solutions are the same as solutions to the Martingale problem. Given $\left(\Omega, \mathcal{F}_{t}, P\right),[b, a]$ and x, and any choice of σ with $\sigma \sigma^{*}=a$, there is a Brownian Motion β such that

$$
d x=b d t+\sigma d \beta
$$

If we assume that a is uniformly positive definite then we can define β as

$$
\beta(t)=\int_{0}^{t} \sigma^{-1}(s, x(s))[d x(s)-b(s, x(s)) d s]
$$

It is easy to check that $\beta \in[0, I]$, because $\sigma^{-1} a \sigma^{-1 *}=I$ and

$$
d x=\sigma d \beta+b d t
$$

The problem is when a can be degenerate. Then we have to go outside to find our Brownian motion. For instance $x(t) \equiv 0$ coreesponds to $a=b=0$ and there is no Brownian motion on the space where there is only the zero path with probability 1 . But we can take any Brownian motion and say

$$
d x=0=0 d \beta
$$

But we should use the new Brownian only we need it. This is done in two steps. First build a new Brownian motion by taking a product with Wiener space. Now we have a space with $x(t), \beta(t)$ corresponding to $[(b(s, \omega), 0),(a(s, \omega), I)]$. Let $Q(s, \omega)$ be the orthogonal projection on to the range of $a(s, \omega)$. If $\sigma \sigma^{*}=a$, then the range of σ is the same as the range of a and $\sigma^{-1} Q$ is well defined. We can define a new Brownian motion $\beta^{\prime}(t)$ by

$$
\beta^{\prime}(t)=\int_{0}^{t} \sigma^{-1}(s, \omega) Q(s, \omega)[d x(s)-b(s, \omega) d s]+\int_{0}^{t}[I-Q(s, \omega)] d \beta(s)
$$

then

$$
\sigma^{-1} Q a Q^{*} \sigma^{-1 *}+I-Q=I
$$

and

$$
d x=\sigma d \beta^{\prime}+b d t
$$

Finally there us uniqueness theorem. If for some σ uniqueness holds in the sense that when ever $x(t), y(t)$ are two solutions on any $\left(\Omega, \mathcal{F}_{t}, P, \beta(\cdot)\right)$ of

$$
\begin{aligned}
& x(t)=x_{0}+\int_{0}^{t} b(s, x(s)) d s+\int_{0}^{t}<\sigma(s, x(s)), d \beta(s)> \\
& y(t)=x_{0}+\int_{0}^{t} b(s, y(s)) d s+\int_{0}^{t}<\sigma(s, y(s)), d \beta(s)>
\end{aligned}
$$

it follows that $x(t) \equiv y(t)$, then there is only one solution to the martingale problem for $[b, a]$ starting from x. The proof depends on a construction. Given $P_{1}, P_{2},[a, b], x, \sigma$, i.e two solutions to the martingale problem for $[b, a]$ from the same starting point x_{0} and a σ satisfying $\sigma \sigma^{*}=a$, we will construct $\left(\Omega, \mathcal{F}_{t}, x(\cdot), y(\cdot), \beta(\cdot)\right)$ such that x and y are solutions with the same b, σ and the distribution of $x(t)$ is P_{1} and that of $y(t)$ is P_{2}. Sinec $x(t) \equiv y(t), P_{1}=P_{2}$. the construction is staright forward. First construct $x(t), \beta(t)$ so that

$$
d x(t)=\sigma(t, x(t)) d \beta(t)+b(t, x(t)) d t
$$

This will produce a joint distribution of $\beta(\cdot)$ and $x(\cdot)$ we write this as $P(d w) Q_{w}^{1}\left(d \omega_{1}\right)$, the marginal of Brownian Motion and the conditional of $x(\cdot)$ given the Brownian motion. Similarly for $y, P(d w) Q_{w}^{2}\left(d \omega_{2}\right)$. Now we can put all three x, y, β on the same space aligning the Brownian trajectories, i.e. take the measure $P(d w) Q_{w}^{1}\left(d \omega_{1}\right) \otimes Q_{w}^{2}\left(d \omega_{2}\right)$. Make the processes x, y conditionally independent given β. One verifies that now we have two solutions on the same space.

Girsanov's formula.

If $b(t, x)$ is bounded and $a(t, x)$ be bounded and uniformly positive definite. P a solution to the martingale problem for $[0, a]$ starting from x.

$$
\exp \left[\int_{0}^{t}<e(s, x(s)), d x(s)>-\frac{1}{2} \int<e(s, x(s)), a(s, x(s)) e(s, x(s))>d s\right]
$$

is a martingale. Choose $e(s, x(s))=\theta+a^{-1}(s, x(s)) b(s, x(s))$.

$$
\begin{aligned}
\exp [& \int_{0}^{t}<\theta+a^{-1}(s, x(s)) b(s, x(s)), d x(s)> \\
& \left.-\frac{1}{2} \int<\theta+a^{-1}(s, x(s)) b(s, x(s)), a(s, x(s))\left[\theta+a^{-1}(s, x(s)) b(s, x(s))\right]>d s\right]
\end{aligned}
$$

is a martingale for every $\theta \in R^{d}$. This simplifies to

$$
\begin{aligned}
\exp [& <\theta, x(t)-x>+\int_{0}^{t}<a^{-1}(s, x(s)) b(s, x(s)), d x(s)> \\
& -\int_{0}^{t}<\theta, b(s, x(s))>d s-\frac{1}{2} \int_{0}^{t}<\theta, a(s, x(s)) \theta>d s \\
& \left.-\frac{1}{2} \int_{0}^{t}<b(s, x(s)), a(s, x(s))\left[a^{-1}(s, x(s)) b(s, x(s))\right]>d s\right] \\
=\exp & {\left[\int_{0}^{t}<a^{-1}(s, x(s)) b(s, x(s)), d x(s)>\right.} \\
& \quad-\frac{1}{2} \int_{0}^{t}<b(s, x(s)), a(s, x(s))\left[a^{-1}(s, x(s)) b(s, x(s))\right]>d s \\
& +\quad<\theta, x(t)-x>-\int_{0}^{t}<\theta, b(s, x(s))>d s \\
& \left.-\frac{1}{2} \int_{0}^{t}<\theta, a(s, x(s)) \theta>d s\right] \\
= & R(t, \omega) Y(\theta, t, \omega)
\end{aligned}
$$

If we set $\theta=0$ then $Y=1$ and $R(t, \omega)$ is a martingale. This defines a measure Q by $d Q=R d P$ and with respect to $Q, Y(\theta, t, \omega)$ are martingales. In other words Q is a solution for $[b, a]$. The steps are reversible so that there is a one to one correspondence between solutions of $[b, a]$ and $[0, a]$. Existence or uniqueness for one implies the same for the other.

Warning. If b is unbounded R may not be a martingale but only a supermartingale. This means that the paths explode and the total mass of Q is less than 1 . In fact then

$$
Q\left[\tau_{\infty}>t\right]=\int R(t, \omega) d P
$$

Random Time Changes. On the space $[C[0, \infty] ; X$ we define a family of transformations. Given a function $V(x): X \rightarrow R$ which is meausrable and satisfies $0<c_{1} \leq V(x) \leq$ $c_{2}<\infty$, we define (stopping) times τ_{t} by

$$
\int_{0}^{\tau_{t}} V(x(s)) d s=t
$$

and the transformation $\Phi_{V}: x(\cdot) \rightarrow y(\cdot)$ by

$$
y(t)=x\left(\tau_{t}\right)
$$

It is not hard to check that

$$
\Phi_{V} \circ \Phi_{U}=\Phi_{U} \circ \Phi_{V}=\Phi_{U V}
$$

If P is a solution to the martingale problem for \mathcal{L} which is time homogeneous, then $Q=\Phi_{U}^{-1}$ is seen to be solution for $\frac{1}{V} \mathcal{L}$.

$$
\int_{0}^{\tau_{t}} g(x(s)) d s=\int_{0}^{t} \frac{g(y(s))}{V(y(s))} d s
$$

Since τ_{t} are stopping times Doob's stopping theorem applies. Since we can go back and forth existence or uniqueness for \mathcal{L} is equivalent to the same for $\frac{1}{V} \mathcal{L}$. In patitcular in $d=1$ we can go from $[0,1]$ to any $[b, a]$ with a bounded b and a bounded above and below by random time change and Girsanov.

PDE Methods.

If a is bounded and uniformly elliptic, b is bounded and they all satisfy Hölder conditions in t and x, then the PDE

$$
u_{t}+\frac{1}{2} \sum a_{i, j}(t, x) u_{i, j}+\sum b_{j}(t, x) u_{j}=0 ; u(T, x)=f(x)
$$

has a classical solution, implying that the solutions to the martingale problem are unique. If we drop the assumption of Hölder continuity and assume only that a is continuous, then there are solutions in Sobolev spaces $W_{p}^{1,2}$. Then one has to show that for any solution to the martingale problem the functional

$$
\Lambda(f)=E^{P}\left[\int_{0}^{T} f(s, x(s)) d s\right]
$$

is bounded in L_{p}. This can be done and implies uniquenss. Note that by Girsanov we can assume $b=0$.

Localization.

We say that a solution to the martingale problem starting from x is unique untill the exit time τ_{G} from $G \ni x$, if any two solutions starting from x agree on $\mathcal{F}_{\tau_{G}}$. The localization principle says that if $[a, b]$ is such that for every x there is a neighborhood G, such that any two solutions starting from x agree until the exit time from G, then there is atmost one solution. This means that for given coefficients we can prove uniqueness by different methods at different points.

