So far we have defined stochastic integrals with respect to processes x(t) that have continuous paths and have certain martingales associated with them. $(\Omega, \mathcal{F}_t, P), x(t, \omega) :$ $\Omega \times [0,T] \to \mathbb{R}^d, b(t, \omega) : \Omega \times [0,T] \to \mathbb{R}^d, a(t, \omega) : \Omega \times [0,T] \to S_d^+$, progressively measurable and $x(t, \omega)$ is continuous a.e. If a and b are uniformly bounded, then we saw that the stochastic integrals

$$\xi(t) = \int_0^t < \sigma(s,\omega), dx(s) >$$

can be defined and is an almost surely continuous process $\Omega \times [0,T] \to \mathbb{R}^n$ provided $\sigma: \Omega \times [0,T] \to \mathbb{R}^n \otimes \mathbb{R}^d$ is progressivley measurable and bounded. The parameters of ξ can be calculated according to the rules for computing means and variances under linear transformations. If $x(\cdot) \in [b,a]$ and $d\xi = \sigma dx$, then $\xi \in [\sigma b, \sigma a \sigma^*]$. Actaully, the class of processes can cover [b,a] with the property

$$\int_0^T |b(s,\omega)| ds < \infty \ a.e.$$

and

$$\int \ {\rm Tr} \ a(s,\omega) ds < \infty \ a.e.$$

Instead of Martingales, the expressions will be local martingales. x(t) is a local martingale if there are stopping times $\tau_n \uparrow \infty$ such that $x(\tau_n \land t)$ is a martingale for every n. Example two dimensional Brownian motion. $\xi(t) = \log r(t)$

$$\log r(t) = \log r(0) + \int_0^t < \frac{x(s)}{r^2(s)}, \ dx(s) >$$

The trouble comes from 0. If $\tau_n = \{\inf t : r(t) \leq \frac{1}{n}\}$, then $\xi(\tau_n \wedge t)$ is seen to be a martingle. ξ is not. It is easy to see that $E[\xi(t)] \to \infty$ as $t \to \infty$. A bounded local martingale is a martingale. A nonnegative local martingale is a supermartingale. Itô's formula holds very generally, because it is an almost sure statement.

Stochastic Differential Equations.

Given b(t, x) and $\sigma(t, x)$ and a Brownian motion $\beta(t)$ and $\xi(\omega) \in \mathcal{F}_s$, solve for $t \geq s$,

$$dx(t) = b(t, x(t))dt + \sigma(t, x(t))d\beta(t); x(s) = \xi(\omega)$$

Can assume that s = 0 and $\xi(\omega) = x_0$. Define iteratively

$$x_{n+1}(t) = x_0 + \int_0^t b(x_n(s))ds + \int_0^t \langle \sigma(x_n(s)), d\beta(s) \rangle$$

Assume that σ and b are bounded and unifomly Lipshitz in x with a Lipshitz constant A. Then, fixing a time interval [0, T],

$$x_{n+1}(t) - x_n(t) = \int_0^t [b(x_n(s)) - b(x_{n-1}(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_{n-1}(s)), d\beta(s) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_{n-1}(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_{n-1}(s)), d\beta(s) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_{n-1}(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_{n-1}(s)), d\beta(s) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_{n-1}(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_{n-1}(s)), d\beta(s) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_n(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_{n-1}(s)), d\beta(s) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_n(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_n(s)) - \sigma(x_n(s)), d\beta(s) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_n(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_n(s)) - \sigma(x_n(s)), d\beta(s) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_n(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_n(s)) - \sigma(x_n(s)) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_n(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_n(s)) - \sigma(x_n(s)) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_n(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_n(s)) - \sigma(x_n(s)) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_n(s))]ds + \int_0^t \langle \sigma(x_n(s)) - \sigma(x_n(s)) - \sigma(x_n(s)) \rangle d\beta(s) = \int_0^t [b(x_n(s)) - b(x_n(s))]ds + \int_0^t [b(x_n(s)) - b(x_n(s))]ds$$

Denoting by $\Delta_n(t) = E[\sup_{0 \le s \le t} |x_n(s) - x_{n-1}(s)|^2]$, we have, from Doob's inequality

$$\Delta_{n+1}(t) \le 2TA^2 \int_0^t \Delta_n(s) ds + 8 \int_0^t \Delta_n(s) ds \le C(T) \int_0^t \Delta_n(s) ds$$

By induction

$$\Delta_n(t) \le \frac{C(T)^n t^n}{n!}$$

Therefore for almost all ω , $x(t) = \lim_{n \to \infty} x_n(t)$, exists uniformly in t, and provides a solution of

$$x(t) = x_0 + \int_0^t b(s, x(s))ds + \int_0^t <\sigma(s, x(s)), \ d\beta(s) > 0$$

It is unique. If x(t), y(t) are two solutions, then $\Delta(t) = E[|x(t) - y(t)|^2]$ satisfies

$$\Delta(t) \leq C(T) \int_0^t \Delta(s) ds$$

and is 0. Clearly $x(\cdot) \in [b(s, x(s, \omega)), a(s, x(s, \omega))]$ with $a = \sigma \sigma^*$. One can easily verify that x(t) is a Markov process, in fact a strong Markov process. The reason is that we have a "black box", we input x_s and Brownian increments and the output is x(t) for $t \geq s$. Since the Brownian increments $\beta(t) - \beta(s)$ are independent of \mathcal{F}_s , we only need the value of $x(s, \omega)$ and the actual ω is unimportant. That is really the Markov property. $\sigma(s, x)$ is not unique. One can change $\sigma'(s, x) = \sigma(s, x)U(s, x)$ where U is an orthogonal matrix. The $\sigma\sigma^* = \sigma'\sigma'^*$. $d\beta'(s) = U^*(s, x(s))d\beta(s)$ defines another Brownian Motion. Therefore the two solutions have the same distribution.

Of course we can start with a solution on some $(\Omega, \mathcal{F}_t, P)$ where both x and β are given and are related by

$$x(t) = x(0) + \int_0^t b(s, x(s))ds + \int_0^t \langle \sigma(s, x(s)), dx(s) \rangle$$

If b,σ are Lipshitz then x is measurable with respect to Brownian σ -field and is the same as the solution constructed earlier. Otherwise it is not clear. Such solutions are the same as solutions to the Martingale problem. Given $(\Omega, \mathcal{F}_t, P)$, [b, a] and x, and any choice of σ with $\sigma\sigma^* = a$, there is a Brownian Motion β such that

$$dx = bdt + \sigma d\beta$$

If we assume that a is uniformly positive definite then we can define β as

$$\beta(t) = \int_0^t \sigma^{-1}(s, x(s)) [dx(s) - b(s, x(s))ds]$$

It is easy to check that $\beta \in [0, I]$, because $\sigma^{-1}a\sigma^{-1*} = I$ and

$$dx = \sigma d\beta + bdt$$

The problem is when a can be degenerate. Then we have to go outside to find our Brownian motion. For instance $x(t) \equiv 0$ corresponds to a = b = 0 and there is no Brownian motion on the space where there is only the zero path with probability 1. But we can take any Brownian motion and say

$$dx = 0 = 0 \, d\beta$$

But we should use the new Brownian only we need it. This is done in two steps. First build a new Brownian motion by taking a product with Wiener space. Now we have a space with $x(t), \beta(t)$ corresponding to $[(b(s, \omega), 0), (a(s, \omega), I)]$. Let $Q(s, \omega)$ be the orthogonal projection on to the range of $a(s, \omega)$. If $\sigma \sigma^* = a$, then the range of σ is the same as the range of a and $\sigma^{-1}Q$ is well defined. We can define a new Brownian motion $\beta'(t)$ by

$$\beta'(t) = \int_0^t \sigma^{-1}(s,\omega)Q(s,\omega)[dx(s) - b(s,\omega)ds] + \int_0^t [I - Q(s,\omega)]d\beta(s)$$

then

$$\sigma^{-1}QaQ^*\sigma^{-1*} + I - Q = I$$

and

$$dx = \sigma d\beta' + b \, dt$$

Finally there us uniqueness theorem. If for some σ uniqueness holds in the sense that when ever x(t), y(t) are two solutions on any $(\Omega, \mathcal{F}_t, P, \beta(\cdot))$ of

$$\begin{aligned} x(t) &= x_0 + \int_0^t b(s, x(s)) ds + \int_0^t < \sigma(s, x(s)), \ d\beta(s) > \\ y(t) &= x_0 + \int_0^t b(s, y(s)) ds + \int_0^t < \sigma(s, y(s)), \ d\beta(s) > \end{aligned}$$

it follows that $x(t) \equiv y(t)$, then there is only one solution to the martingale problem for [b, a] starting from x. The proof depends on a construction. Given $P_1, P_2, [a, b], x, \sigma$, i.e two solutions to the martingale problem for [b, a] from the same starting point x_0 and a σ satisfying $\sigma\sigma^* = a$, we will construct $(\Omega, \mathcal{F}_t, x(\cdot), y(\cdot), \beta(\cdot))$ such that x and y are solutions with the same b, σ and the distribution of x(t) is P_1 and that of y(t) is P_2 . Since $x(t) \equiv y(t), P_1 = P_2$. the construction is staright forward. First construct $x(t), \beta(t)$ so that

$$dx(t) = \sigma(t, x(t))d\beta(t) + b(t, x(t))dt$$

This will produce a joint distribution of $\beta(\cdot)$ and $x(\cdot)$ we write this as $P(dw)Q_w^1(d\omega_1)$, the marginal of Brownian Motion and the conditional of $x(\cdot)$ given the Brownian motion. Similarly for y, $P(dw)Q_w^2(d\omega_2)$. Now we can put all three x, y, β on the same space aligning the Brownian trajectories, i.e. take the measure $P(dw)Q_w^1(d\omega_1) \otimes Q_w^2(d\omega_2)$. Make the processes x, y conditionally independent given β . One verifies that now we have two solutions on the same space.

Girsanov's formula.

If b(t, x) is bounded and a(t, x) be bounded and uniformly positive definite. P a solution to the martingale problem for [0, a] starting from x.

$$\exp\left[\int_{0}^{t} \langle e(s, x(s)), dx(s) \rangle - \frac{1}{2} \int \langle e(s, x(s)), a(s, x(s))e(s, x(s)) \rangle ds\right]$$

is a martingale. Choose $e(s, x(s)) = \theta + a^{-1}(s, x(s))b(s, x(s))$.

$$\exp\left[\int_{0}^{t} <\theta + a^{-1}(s, x(s))b(s, x(s)), dx(s) > -\frac{1}{2}\int <\theta + a^{-1}(s, x(s))b(s, x(s)), a(s, x(s))[\theta + a^{-1}(s, x(s))b(s, x(s))] > ds\right]$$

is a martingale for every $\theta \in \mathbb{R}^d$. This simplifies to

$$\begin{split} \exp\left[<\theta, x(t) - x > + \int_0^t < a^{-1}(s, x(s))b(s, x(s)), dx(s) > \\ & -\int_0^t <\theta, b(s, x(s)) > ds - \frac{1}{2}\int_0^t <\theta, a(s, x(s))\theta > ds \\ & -\frac{1}{2}\int_0^t < b(s, x(s)), a(s, x(s))[a^{-1}(s, x(s))b(s, x(s))] > ds \right] \\ = \exp\left[\int_0^t < a^{-1}(s, x(s))b(s, x(s)), dx(s) > \\ & -\frac{1}{2}\int_0^t < b(s, x(s)), a(s, x(s))[a^{-1}(s, x(s))b(s, x(s))] > ds \\ & + <\theta, x(t) - x > -\int_0^t <\theta, b(s, x(s)) > ds \\ & -\frac{1}{2}\int_0^t <\theta, a(s, x(s))\theta > ds \right] \\ = R(t, \omega)Y(\theta, t, \omega) \end{split}$$

If we set $\theta = 0$ then Y = 1 and $R(t, \omega)$ is a martingale. This defines a measure Q by dQ = RdP and with respect to Q, $Y(\theta, t, \omega)$ are martingales. In other words Q is a solution for [b, a]. The steps are reversible so that there is a one to one correspondence between solutions of [b, a] and [0, a]. Existence or uniqueness for one implies the same for the other.

Warning. If b is unbounded R may not be a martingale but only a supermartingale. This means that the paths explode and the total mass of Q is less than 1. In fact then

$$Q[\tau_{\infty} > t] = \int R(t,\omega)dP$$

Random Time Changes. On the space $[C[0,\infty]; X$ we define a family of transformations. Given a function $V(x): X \to R$ which is measurable and satisfies $0 < c_1 \leq V(x) \leq c_2 < \infty$, we define (stopping) times τ_t by

$$\int_0^{\tau_t} V(x(s)) ds = t$$

and the transformation $\Phi_V: x(\cdot) \to y(\cdot)$ by

$$y(t) = x(\tau_t)$$

It is not hard to check that

$$\Phi_V \circ \Phi_U = \Phi_U \circ \Phi_V = \Phi_{UV}$$

If P is a solution to the martingale problem for \mathcal{L} which is time homogeneous, then $Q = \Phi_U^{-1}$ is seen to be solution for $\frac{1}{V}\mathcal{L}$.

$$\int_0^{\tau_t} g(x(s))ds = \int_0^t \frac{g(y(s))}{V(y(s))}ds$$

Since τ_t are stopping times Doob's stopping theorem applies. Since we can go back and forth existence or uniqueness for \mathcal{L} is equivalent to the same for $\frac{1}{V}\mathcal{L}$. In patitcular in d = 1 we can go from [0, 1] to any [b, a] with a bounded b and a bounded above and below by random time change and Girsanov.

PDE Methods.

If a is bounded and uniformly elliptic, b is bounded and they all satisfy Hölder conditions in t and x, then the PDE

$$u_t + \frac{1}{2} \sum a_{i,j}(t,x) u_{i,j} + \sum b_j(t,x) u_j = 0; \ u(T,x) = f(x)$$

has a classical solution, implying that the solutions to the martingale problem are unique. If we drop the assumption of Hölder continuity and assume only that a is continuous, then there are solutions in Sobolev spaces $W_p^{1,2}$. Then one has to show that for any solution to the martingale problem the functional

$$\Lambda(f) = E^{P}[\int_{0}^{T} f(s, x(s))ds]$$

is bounded in L_p . This can be done and implies uniquenss. Note that by Girsanov we can assume b = 0.

Localization.

We say that a solution to the martingale problem starting from x is unique untill the exit time τ_G from $G \ni x$, if any two solutions starting from x agree on \mathcal{F}_{τ_G} . The localization principle says that if [a, b] is such that for every x there is a neighborhood G, such that any two solutions starting from x agree until the exit time from G, then there is atmost one solution. This means that for given coefficients we can prove uniqueness by different methods at different points.