
Lecture 3.

If we specify Dt,ω as a progressively mesurable map of (Ω × [0, T ],Ft) into the space of
infinitely divisible distributions, as well as an initial distribution for the starting point
x(0) = x then we would like to associate a measure P on the space Ω of paths on [0, T ].

Definition of ”progressively measurable”: In general we definitely want our maps
from Ω × [0, T ] to any space (Y,Σ) to be non-anticipating, i.e. y(t, ω) from Ω → Y to be
measurable with respect to the σ-field Ft of events observable upto time t. But technically
we need a little bit more. To do natural things like define η(t) =

∫ t

0
f(y(s, ω))ds and get

them to be again non-anticipating functions one needs the joint measurability of y as a
function of t and ω, which does not follow from measurability in ω alone. If the map
is continuous in t for each ω then for every t > 0 the map y : Ω × [0, t] → Y is jointly
measurable with respect to the product σ-field Ft × Bt, where Ft is the σ-field of events
observable upto time t and Bt is the Borel σ-field on the interval [0, t]. In general we have
to assume this property, known as progressive measurability. With this, natural operations
like integrals can be performed and result again in functions with the same property.

How should P be related to Dt,ω?. The intuitive infinitesimal picture that we gave is
hard to deal with in mathematically rigorous fashion. We turn instead to an essentially
equivalent integral formulation with the help of martingales.

Let f(x) be a smooth function on R. We can define for any infinitely divisible distribution
or equivalently for any triplet [b, σ2,M ] in the Levy-Khintchine representation the operator
A acting on f by

(Af)(x) = bf ′(x) +
σ2

2
f ′′(x) +

∫

[f(x+ y) − f(x) −
yf ′(x)

1 + y2
]M(dy)

This operator commutes with translations and it is not hard to evaluate

Aeiξx = ψ(ξ)eiξx

A is the infinitesimal generator of the semigroup Tt = etA which is convolution by µt with
characteristic function etψ(ξ). In other words A is the infinitesimal generator

A = lim
t→0

Tt − I

t

and

(Ttf)(x) =

∫

f(x+ y)µt(dy) = E[f(x(t))|x(0) = x]

where the expectation is with respect to the process with independent increments x(t)
which has distribution µt and characteristic function etψ(ξ).
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If Dt,ω is given then we have [b(t, ω), σ2(t, ω),Mt,ω(dy)]. Assuming they depend reasonably
on t, ω we have the operator

(At,ωf) = b(t, ω)f ′(x) +
σ2(t, ω)

2
f ′′(x) +

∫

[f(x+ y) − f(x) −
yf ′(x)

1 + y2
]Mt,ω(dy)

and for each f , u(t, ω, x) = (At,ωf)(x) is a progressively meausrable map into the space of
smooth functions on R. The natural boundedness assumption is to assume that

sup
0≤t≤T

ω∈Ω

[|b(t, ω)|+ σ2(t, ω) +

∫

y2

1 + y2
Mt,ω(dy)] <∞

One could in addition assume that u(t, ω, x) is a continuous functional of its variables.
Then the realtionship between P and Dt,ω can be expressed as follows.

We say that P is a solution to the ”Martingale Problem” corresponding to Dt,ω or
equivalently [b(t, ω), σ2(t, ω),Mt,ω(dy)] starting from x at time 0, if for every smooth f

Zf (t) = f(x(t))− f(x(0))−

∫ t

0

(As,ωf)(x(s))ds = f(x(t))− f(x(0))−

∫ t

0

u(s, ω, x(s))ds

is a martingale with respect to (Ω,Ft, P ) and P [x(0) = x] = 1. Even if it is assumed
only for functions f that depend on x alone, it extends automatically to functions f that
depend smoothly on x and t. If we freeze t and apply At,ω with

u(t, x, ω) = At,ωf(t, ·)(x)

Zf (t) = f(t, x(t))− f(0, x(0))−

∫ t

0

[∂f

∂s
(s, x(s)) + u(s, ω, x(s))

]

ds

is a martingale with respect to (Ω,Ft, P ). This is not hard to prove. We need to show
E[Zf (t) − Zf (s)|Fs] = 0. Let us show that

EP [Zf (t)] = 0

The conditional argument is identical. Let V (s, τ, ω, x) = (Aτ,ωf(s, ·))(x)

EP [Zf (t)] = EP
[

f(t, x(t))− f(0, x(0))−

∫ t

0

[fs(s, x(s)) + V (s, s, ω, x(s))ds]
]

= EP
[

f(t, x(t))− f(t, x(0)) + f(t, x(0))− f(0, x(0))

−

∫ t

0

[fs(s, x(s)) + V (s, s, ω, x(s))ds]
]

= EP
[

∫ t

0

V (t, s, ω, x(s))ds+

∫ t

0

fs(s, x(0))ds

−

∫ t

0

[fs(s, x(s)) + V (s, s, ω, x(s))ds]
]

= EP
[

∫ t

0

ds

∫ t

s

Vτ (τ, s, ω, x(s)))dτ −

∫ t

0

ds

∫ s

0

V (s, τ, ω, x(τ))dτ
]

= 0
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If we use the fact that for any martingale M(t) and a function of bounded variation A(t)
the quantity

M(t)A(t)−

∫ t

0

M(s)dA(s)

is again a martingale we can go, back and forth, between adidtive martingales

Zf (t) = ef(t,x(t)) − ef(0,x(0)) −

∫ t

0

[(
∂

∂s
+ As,ω)ef ](s, x(s))ds

and multiplicative martingales

Yf (t) = exp

[

f(x(t))− f(x(0))−

∫ t

0

[e−f ((
∂

∂s
+ As,ω)ef )(s, x(s))]ds

]

This requires the choice of M(t) = Zf (t) and

A(t) = exp

[

−

∫ t

0

[e−f ((
∂

∂s
+ As,ω)ef )(s, x(s))]ds

]

and a similar choice of M(t) = Yf (t) and

A(t) = exp

[ ∫ t

0

[e−f ((
∂

∂s
+ As,ω)ef )(s, x(s))]ds

]

to go back.

Let us look at the case M ≡ 0. Then

e−f ((
∂

∂s
+As,ω)ef )(s, x) = fs(s, x)+b(s, ω)fx(s, x)+

σ2(s, ω)

2
fxx(s, x)+

σ2(s, ω)

2
|fx(s, x)|

2

Let us take f(x) = θx. We get

Yθ(t) = exp

[

θ[x(t) − x(0) −

∫ t

0

b(s, ω)ds]−
θ2

2

∫ t

0

σ2(s, ω)ds

]

We need to justify this because θx is unbounded. We can truncate and pass to the limit.
By Fatou’s lemma we will only get that Yf (t) is a super-martingale. This is enough to get
a bound

EP [Yθ(t)] ≤ 1

Since σ2 is bounded by C,

EP
[

exp

[

θ[x(t) − x(0) −

∫ t

0

b(s, ω)ds]

]

≤ e
Ctθ2

2
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By Tchebechev’s inequality, this will give a Gaussian type bound on

P [|x(t) − x(0) −

∫ t

0

b(s, ω)ds| ≥ ℓ] ≤ Ae−
ℓ2

2Ct

which can then be used to get uniform integrabilty and actually show that Yθ(t) is a
martingale.

Remark. If we just knew that Yθ(t) are martingales, it is easy to see that one can continue
analytically and replace θ by iθ. We can then go from Yiθ(t) to Ziθ(t). By Fourier synthesis
it is easy to pass from {eiθx : θ ∈ R} to smooth functions f . In terms of Yθ(t) it is easy to

see that y(t) = x(t) −
∫ t

0
b(s, ω)ds corresponds to [0, σ2(t, ω)].

Since we have uniform Gaussian estimates on any y(t) corresponding to [0, σ2(t, ω)] with
a bounded σ2 of the from

E
[

e
θ√
t
[y(t)−y(0)]]

≤ e
Cθ2

2

one can get estimates of the form

E[(y(t)− y(0))2n] ≤ cnt
n

or
E[(y(t)− y(s))2n] ≤ cn|t− s|n

proving, by Kolmogorov’s theorem tightness for any family {Pα} that corresponds to
[0, σ2

α(t, ω)] provided there is a uniform bound on {σ2
α(t, ω)} as well as the starting points

{xα}. Adding ”b” causes no problem because {
∫ t

0
bα(s, ω)ds} are uniformly Lipshitz if we

have a uniform bound on {bα(t, ω)}.

We will use this to prove existence of P for given b, σ2. Let us do this for the Markovian
case where b(t, ω), σ(t, ω) are given by b(t, x(t)) and σ(t, x(t)). We assume that b, σ are
bounded continuous functions of t, x. If b and σ are constants then bt+ σβ(t) where β(t)
is Brownian motion will do it. We split the interval [0, T ] into subintervals of length h and
run x(t) = b(0, x)t+ σ(0, x)β(t) upto time h. Then conditionally in the interval [h, 2h] we
run x(t) = x(h) + b(h, x(h))(t− h) + σ(h, x(h))[β(t)− β(h)]. The role of β(t) − β(h) is to
give us a Brownian motion independent of the past. We continue like this till time t. It is
not hard to check, by induction if you want to be meticulous, that we now have a process
Ph that is a solution to the martingale problem corresponding to [bh(t, ω), σ2

h(t, ω)], where

bh(t, ω) = b(πh(t), x(πh(t)); σ2
h(t, ω) = σ2(πh(t), x(πh(t))

and πh(t) = sup{s : s ≤ t, s = kh} the last time of updating. Since the starting points are
same and {bh, σ

h} are uniformly bounded Ph is tight. It is not hard to see that any limit
point P of {Ph} as h→ 0 will work.

EPh [Zhf (t) − Zhf (s)|Fs] = 0
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Ph → P and Zhf → Zf . One can easily pass to the limit if it were not for the conditioning.
But all the conditioning is the relation

EPh
[

[Zhf (t) − Zhf (s)]G(ω)
]

= 0

For any Fs measurable bounded function. It is enough to check for all bounded continuous
functions G and in that case we can pass to the limit under weak convergence of Ph to P .

Uniquenss, Markov property etc. Suppose we can solve the PDE

us + b(s, x)ux(s, x) +
σ2(s, x)

2
uxx(s, x) = 0; u(t, x) = f(x)

for 0 ≤ s ≤ t, and for any t ≤ T for a large class of functions f and get a smooth solution.
Then for any solution P of the martingale problem corresponding to b(t, x), σ2(t, x) that
starts from x at time s

u(s, x) = EP [f(x(t)]

Another way of saying it is that if we define by Cs,x the set of all solutions to the martin-
gale problem corresponding to a(·, ·) and σ2(·, ·) then for any solution for any P ∈ Cs,x,
EP [f(x(t))] is gineby u(t, x) where u is a solution of the PDE above. If the solution to the
PDE exists for sufficiently many f , then the distribution of of x(t) under any P ∈ Cs.x is
dtermined and is given by P (s, x, t, dy) that satisfies

u(s, x) =

∫

f(y)p(s, x, t, dy)

for all 0 ≤ s < t ≤ T . One can alternatively solve

us(s, x) + b(s, x)ux(s, x) +
σ2(s, x)

2
uxx(s, x) + f(s, x) = 0 in [0, T ] ×R; u(T, x) = 0

Then for any P ∈ Cs,x we would get

u(s, x) = EP [

∫ T

s

f(t, x(t))dt]

and that would determine P [x(t) ∈ A] as well. To dtermine P completely as well as to
prove the Markov property it suffiecs to show that if P ∈ Cs,x ans s < t < T then the
regular conditional probability distribution Qt,ω of P given Ft is in Ct,x(t) for almost all
ω with respect to P . This amounts to proving

EQt,ω [Zf (t
′) − Zf (t)|Ft′ ] = 0 a.e Qt,ω, a.e. P

In other words for A ∈ Ft, B ∈ Ft′

∫

A

[

∫

B

[Zf (t
′) − Zf (t)]dQt,ω]dP = 0
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But this equals
∫

A∩B

[Zf (t
′) − Zf (t)]dP = 0

because A ∩ B ∈ Ft′ . There are problems with sets of measure zero that now depend on
f, A,B, t, t′. But countable choices can be made to get one null set and then the result
extended by continuity.

By this argument if the PDE has enough solutions then P ∈ Cs,x is Markov with transition
probability p(s, x, t, dy) and is unique. The same argument applies to stopping times
by Doob’s theorem on stopping times for Martingales and we deduce the strong Markov
property as well. Once we know τ(ω) and x(τ(ω)), ω), the process is the unique probability
measure Pτ,x(τ) ∈ Cτ,x(τ)

Lecture 4.

One could in a similar fashion consider Markov processes with jumps determined by
b(t, x), σ2(t, x),M(t, x, dy). and the corresponding operator

(Asf)(x) = b(s, x)fx +
σ2(s, x)

2
fxx +

∫

[f(x+ y) − f(x) −
yfx(x)

1 + y2
]M(s, x, dy)

Solutions to the Martingale problem will be determined in exactly similar manner by
solving instead of the PDE, the integro diffrential equation

us(s, x) + (Asu(s, ·))(x) = 0; u(t, x) = f(x)

or
us(s, x) + (Asu(s, ·))(x) + f(s, x) = 0; u(t, x) = 0

for sufficiently many functions f . The martingales involved as well as the process itself
are only right continuous and have left limits, but may have jumps. Otherwise the theory
is very similar. For proving existence one works in the Skorohod space D[0, T ] instead of
C[0, T ] which is the natural space for diffusions, i.e. Markov processes with out jumps.

In the homogeneous or time independent case, we have the operator

(Af)(x) = b(x)fx +
σ2(x)

2
fxx +

∫

[f(x+ y) − f(x) −
yfx(x)

1 + y2
]M(x, dy)

In order to construct the semigroup Tt with generator A one can, in the semi group theory
solve for the resolvent

Rλ = (λI −A)−1 =

∫ ∞

0

e−λtTt dt

and reconstruct Tt from Rλ as

Tt = lim
λ→∞

etλ(Rλ−I)
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But one can use martingales instead of semigroup theory and if the equation

λuλ(x) − (Auλ)(x) = f(x)

has a solution, then
w(s, x) = e−λsu(x)

solves
ws + (Aw(s, ·) + e−λsf(x) = 0

Therefore with respect to any P ∈ C0,x,

w(t, x(t)) +

∫ t

0

e−λsf(x(s))ds

is a Martingale. Equating expectations at 0 and ∞, since w(t, x) → 0 as t→ ∞, we get

uλ(x) = w(0, x) = EP [

∫ ∞

0

e−λsf(x(s))ds

From the uniqueness theorem for Laplace transforms we determine

EP [f(x(t)] =

∫

f(y)q(t, x, dy).

The rest of proceeds like the inhomogeneous case. The transition probabilities p(s, x, t, dy)
are given by q(t− s, x, dy).

Stochastic Integrals, Itô’s formula. Although we have seen examples of this, it is
useful to introduce the following general concept. We have a probability space (Ω,F , P )
and an increasing family Ft of sub-σ-fields. One can assume that F is generated by ∪tFt.
Limiting ourselves to the continuous case given x(t, ω), b(t, ω) and σ2(t, ω) that are pro-
gressively measurable,we say that x(·.·) is an Itô process corresponding to b(t, ω), σ2(t, ω)
on (Ω,Ft, P ), if x(t, ω) is almost surely continuous and Zf (t) are martingales with respect
to (Ω,Ft, P ). We denote this in symbols by x(·) ∈ I[b(·, ·), σ2(·, ·)]. We know for instance

that if x(·) ∈ I[b(·, ·), σ2(·, ·)] and y(t) =
∫ t

0
b(s, ω)ds then y(·) ∈ I[0, σ2(·, ·)]. If we want

to define stochastic integrals with respect to x(·) since x(t) − y(t) is of bounded variation
we can always assume that b = 0.

Simple functions. A simple function relative to a partition 0 = t0 < t1 < · · · < tn = T
is a bounded function c(s, ω) which is equal to c(tj−1, ω) in the interval [tj−1, tj ] with
c(tj−1, ω) being Ftj−1

measurable. One can define the stocahs tic integral ξ(t, ω) by

ξ(t) =

∫ t

0

c(s)dx(s)

=

j−1
∑

i=1

c(ti−1, ω)[x(ti) − x(ti−1)] + c(tj−1, ω)[x(t)− x(tj−1)]
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Clearly ξ(t) is continuous and it is not hard to check that it is an Itô process corresponding
to [0, c2(s, ω)σ2(s, ω)]. To see this we need to note that since

EP [eθ(x(tj)−x(tj−1)) −
θ2

2

∫ tj

tj−1

σ2(s, ω)ds|Ftj−1
] = 1

for all θ, we can take for θ a function θ c(tj−1, ω) which is Ftj−1
measurable. It is now easy

to check that ξ(t) is a martingale and

EP [ξ(t)] = 0;EP [ξ2(t)] = EP [

∫ t

0

|c(s, ω)|2ds]

Bounded progressively mesuarble integrands. If c is bounded and progressively
measurable it can be approximated by a sequence cn of simple functions such that

lim
n→∞

EP [

∫ T

0

|cn(s, ω)− c(s, ω)|2ds] = 0

For h > 0 one defines

ch(s, ω) =
1

h

∫ s

s−h

c(s, ω)ds

if s > h and 0 otherwise. Then ch are uniformly bounded and
∫ T

0
|ch(s, ω)−c(s, ω)|2ds→ 0

a.e P . Therefore

EP [

∫ T

0

|ch(s, ω)− c(s, ω)|2ds] → 0

as h → 0. Now ch is continuous in s and can be easily approximated by defining
ch, n(s, ω) to be ch(tj−1, ω) on [tj−1, tj ]. We approximate c by ch and ch by ch,n. Now if

EP [
∫ T

0
|cn(s, ω)− c(s, ω)|2ds→ 0, then by Doob’s inequality

lim
n,m→∞

EP [ sup
0≤t≤T

|ξn(t) − ξm(t)|2dt] = 0

By taking a subsequence if needed there is an almost surely uniform limit of ξn(t) =
∫ t

0
cn(s, ω)dx(s) and we define it to be ξ(t) =

∫ t

0
c(s, ω)dx(s). It is not hard to check that

ξ(t) ∈ I[0, c2(s, ω)σ2(s, ω)].

Further Extensions. One can define ξ(t) =
∫ t

0
c(s, ω)dx(s) for unbounded c(s, ω) pro-

vided EP [
∫ T

0
|c(s, ω)|2ds] < ∞. Since σ2(s, ω) is bounded a simple truncation gives it as

a square integrable limit of bounded approximating ones obtaine by truncation. All the
stochastic integrals are almost surely contnouos square integrable martingales with

EP [|ξ(t)|2] = EP [

∫ t

0

|c(s, ω)2σ2(s, ω)ds]
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One gets the exponetial martingales only if c(s, ω)σ(s, ω) is bounded. The stochstic inte-
grals are still Itô processes but correspond to unbounded parameters and can be defined
by martingales Zf (t).

Multi-dimensional versions. The stochastic process is Rn valued. The defiining pa-
rameters are b̃ with components bi, 1 ≤ i ≤ n, a positive semi-definite symmetric matrix
{ai,j(s, ω)} and possibly a levy-measuure M(s, ω, dy) on Rn/backslash{0}. The operator
As,ω is given by

(As,ωf) =
∑

bi(s, ω)fxi
(x) +

1

2

∑

ai,j(s, ω)fxixj
(x)

+

∫

[f(x+ y) − f(x) −
< y, (∇f)(x)

1 + ‖y‖2
M(s, ω, dy)

The exponential martingales are

exp

[

< θ, x(t)− x(0) −

∫ t

0

< θ, b(s, ω) > ds−
1

2

∫ t

0

< θ, a(s, ω)θ > ds

The PDE, in the Markov case is

ut+ < b(s, x),∇u(s, x) > +
1

2

∑

ai,j(s, x)uxi,xj
(s, x) = 0, u(t, x) = f(x).

The stochastic integrals take the form

y(t) =

∫ t

0

c(s, ω) · dx(s)

where c is an m×n matrix. Then y takes values in Rm. The definitions are simple enough.
We do it componentwise.

yi(t) =
∑

j

∫ t

0

ci,j(s, ω)dxj(s)

If x(t) ∈ I[b, a] then y(t) ∈ I[cb, cac∗].

Itô’s formula. Let f(t, x) be a smooth function and x(t) ∈ I[a(s, ω), σ2(s, ω)] with
bounded a and σ2. We define y(t) = f(t, x(t)) and wish to consider the pair x(t), y(t) as a
two dimensional Itô process. Its chracteristic paramters will be [ã, C̃] a two vector ã and
a 2 positive semidefinite matrix C̃. We can compute them by calculating

∂F (x, f(x, t))

∂t
= F2ft

and

Ft + AF = F2ft + b(s, ω)[F1 + F2fx] +
σ2(s, x)

2
[F11 + 2F1,2fx + F22f

2
x + F2fxx]
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One can read off from this

b̃ = {b(s, ω)fs(s, x(s)) + b(s, ω)fx(s, x(s)) +
σ2(s, ω)

2
fxx}

and

C =





σ2(s, ω) σ2(s, ω)fx(s, x(s))

σ2(s, ω)fx(s, x(s)) σ2(s, ω)f2
x(s, x(s))





If this is not clear one can do it with the exponential martingale that makes it more
transparent.

exp[λ1x(t) + λ2f(t, x(t))−

∫ t

0

G(λ1, λ2, s, ω)ds]

is a martingale provided

G(λ1, λ2, s, ω) = exp[−λ1x(t)−λ2f(t, x(t))]ω)
∂

∂x
+
σ2(s, ω)

2
∂2∂x2] exp[λ1x(t)+λ2f(t, x(t))]da1x(t)+λ2f(

G will be a secon degree polynomial in λ1, λ2 and the coefficients of the linear and quadratic
terms determine b̃, C. Now we can define the stochastic integral

η(t) =

∫ t

0

< {c1(s, ω), c2(s, ω)}, {dx(s), dy(s)}>=

∫ t

0

c1(s, ω)dx(s) +

∫ t

0

c2(s, ω)dy(s)

and its parameters are

b = c1(s, ω)b(s, ω) + c2(s, ω)b(s, ω)fx(s, x(s)) +
σ2(s, ω)

2
fxx(s, x(s))

and

a = c1(s, ω)2σ2(s, ω) + 2c1(s, ω)c2(s, ω)σ2(s, ω)fx(s, x(s)) + c2(s, ω)2σ2(s, ω)f2
x(s, x(s))

If we choose c1(s, ω) = −fx(s, x(s)) and c2 = 1, then a = 0 and b = σ2(s,ω)
2

fxx(s, x(s)).
In particular if

z(t) = y(t) − y(0) −

∫ t

0

[fs(s, x(s))ds+ fx(s, x(s))dx(s) +
σ2(s, ω)

2
fxx(s, x(s))ds

then z(t) ∈ I[0, 0] and is in fact zero.
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