Probability, Limit Theorems

Problem set 6. Due Oct 31, 2002

Q1. In the law of the iterated logarithm, where

$$
\begin{aligned}
& \lim \sup \frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{2 n \log \log n}}=1 \\
& \lim \inf \frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{2 n \log \log n}}=-1
\end{aligned}
$$

prove that the set of limit points of

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{2 n \log \log n}}
$$

consists of the entire interval $[-1,1]$.
Q2. Consider the binary expansion of a number $0<x<1$

$$
x=\sum_{k=1}^{\infty} \frac{a_{k}}{2^{k}}
$$

where $a_{k}=0$ or 1 .
a) Prove that a_{k} are well defined for almost all x (w.r.t Lebesgue measure).
b) Prove that almost surely

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2} \cdots+a_{n}}{n}=\frac{1}{2}
$$

c) What can you say about

$$
\limsup _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}-\frac{n}{2}}{\sqrt{2 n \log \log n}}
$$

