Probability, Limit Theorems

Problem set 1. Sept 19, 2002

For each probability measure μ on the Borel subsets of R^{2} define the distribution function $F(a, b)$ by

$$
F(a, b)=\mu[(x, y):-\infty<x \leq a,-\infty<y \leq b]
$$

Show that $F(\cdot, \cdot)$ satisfies the following conditions:

1. $F(a, b)$ is non-decreasing and right continuous in each variable a and b.
2.

$$
\begin{aligned}
\lim _{a \rightarrow-\infty} F(a, b) & =0 \text { for each } b \\
\lim _{b \rightarrow-\infty} F(a, b) & =0 \text { for each } a \\
\lim _{\substack{a \rightarrow \infty \\
b \rightarrow \infty}} F(a, b) & =1
\end{aligned}
$$

3. For $-\infty<a<a^{\prime}<\infty$ and $-\infty<b<b^{\prime}<\infty$

$$
F\left(a^{\prime}, b^{\prime}\right)-F\left(a, b^{\prime}\right)-F\left(a^{\prime}, b\right)+F(a, b) \geq 0
$$

Conversely, show that any F satisfying these conditions arises from a unique probability measure μ.

Due by Sept 26 .

