
Chapter 6

Stationary Stochastic
Processes.

6.1 Ergodic Theorems.

A stationary stochastic process is a collection {ξn : n ∈ Z} of random vari-
ables with values in some space (X,B) such that the joint distribution of
(ξn1, · · · , ξnk

) is the same as that of (ξn1+n, · · · , ξnk+n) for every choice of
k ≥ 1, and n, n1, · · · , nk ∈ Z. Assuming that the space (X,B) is reasonable
and Kolmogorov’s consistency theorem applies, we can build a measure P on
the countable product space Ω of sequences {xn : n ∈ Z} with values in X,
defined for sets in the product σ-field F . On the space Ω there is the natural
shift defined by (Tω)(n) = xn+1 for ω with ω(n) = xn. The random variables
xn(ω) = ω(n) are essentially equivalent to {ξn}. The stationarity of the pro-
cess is reflected in the invariance of P with respect to T i.e. PT−1 = P . We
can without being specific consider a space Ω a σ-field F , a one to one invert-
ible measurable map from Ω→ Ω with a measurable inverse T−1 and finally
a probability measure P on (Ω,F) that is T -invariant i.e P (T−1A) = P (A)
for every A ∈ F . One says that P is an invariant measure for T or T is a
measure preserving transformation for P . If we have a measurable map from
ξ : (Ω,F)→ (X,B), then it is easily seen that ξn(ω) = ξ(T nω) defines a sta-
tionary stochastic process. The study of stationary stochastic process is then
more or less the same as the study of measure preserving (i.e. probability
preserving) transformations.

The basic transformation T : Ω → Ω induces a linear transformation U
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on the space of functions defined on Ω by the rule (Uf)(ω) = f(Tω). Because
T is measure preserving it is easy to see that∫

Ω

f(ω) dP =

∫
Ω

f(Tω) dP =

∫
Ω

(Uf)(ω) dP

as well as ∫
Ω

|f(ω)|p dP =

∫
Ω

|f(Tω)|p dP =

∫
Ω

|(Uf)(ω)|p dP.

In other words U acts as an isometry (i.e. norm presrving linear transforma-
tion) on the various Lp spaces for 1 ≤ p <∞ and in fact it is an isometry on
L∞ as well. Moreover the transformation induced by T−1 is the inverse of U
so that U is also invertible. In particular U is unitary ( or orthogoanl)on L2.
This means it presrves the inner product < ·, · >.

< f, g >=

∫
f(ω)g(ω)dP =

∫
f(Tω)g(Tω)dP =< Uf, Ug > .

Of course our linear transformation U is very special and satisfies U1 = 1
and U(fg) = (Uf)(Ug).

A basic theorem known as the Ergodic theorem asserts that

Theorem 6.1. For any f ∈ L1(P ) the limit

lim
n→∞

f(ω) + f(Tω) + · · ·+ f(T n−1ω)

n
= g(ω)

exists for almost all ω with respect to P as well as in L1(P ). Moreover if
f ∈ Lp for some p satisfying 1 < p < ∞ then the function g ∈ Lp and the
convergence takes place in that Lp. Moreover the limit g(ω) is given by the
conditional expectation

g(ω) = EP [f |I]
where the σ-field I, called the invariant σ-field, is defined as

I = {A : TA = A}.
Proof. Fisrst we prove the convergence in the various Lp spaces. These are
called mean ergodic theorems. The easiest situation to prove is when p = 2.
Let us define

H0 = {f : f ∈ H,Uf = f} = {f : f ∈ H, f(Tω) = f(ω)}.



6.1. ERGODIC THEOREMS. 181

Since H0 contains constants, it is a closed nontrivial subspace of H = L2(P ),
of dimension at least one. Since U is unitary Uf = f if and only if U−1f =
U∗f = f where U∗ is the adjoint of U . The orthogonal complement H⊥

0 can
be defined as

H⊥
0 = {g :< g, f >= 0 ∀f : U∗f = f} = Range(I − U)H .

Clearly if we let

Anf =
f + Uf + · · ·+ Un−1f

n

then ‖Anf‖2 ≤ ‖f‖2 for every f ∈ H and Anf = f for every n and f ∈ H0.
Therefore for f ∈ H0, Anf → f as n→∞. On the other hand if f = (I−U)g,

Anf = g−Ung
n

and ‖Anf‖2 ≤ 2‖g‖2

n
→ 0 as n→∞. Since ‖An‖ ≤ 1, it follows

that Anf → 0 as n→∞ for every f ∈ H⊥
0 = Range(I − U)H . (See exercise

6.1). If we denote by π the orthogonal projection from H → H0, we see that
Anf → πf as n→∞ for every f ∈ H establishing the L2 ergodic theorem.

There is an alternate characterization ofH0. Functions f in H0 are invari-
ant under T , i.e. have the property that f(Tω) = f(ω). For any invariant
function f the level sets {ω : a < f(ω) < b} are invariant under T . We
can therefore talk about invariant sets {A : A ∈ F , T−1A = A}. Technically
we should allow ourselves to differ by sets of measure zero and one defines
I = {A : P (A∆T−1A) = 0} as the σ-field of almost invariant sets. . Noth-

ing is therefore lost by taking I to be the σ-field of invariant sets. We can
identify the orthogonal projection π as (see Exercise 4.8)

πf = EP
{
f |I}

and as the conditional expectation operator, π is well defined on Lp as an
operator of norm 1, for all p in the range 1 ≤ p ≤ ∞. If f ∈ L∞, then
‖Anf‖∞ ≤ ‖f‖∞ and by the bounded convergence theorem, for any p sat-
isfying 1 ≤ p < ∞, we have ‖Anf − πf‖p → 0 as n → ∞. Since L∞ is
dense in Lp and ‖An‖ ≤ 1 in all the Lp spaces it is easily seen, by a simple
approximation argument, that for each p in 1 ≤ p <∞ and f ∈ Lp,

lim
n→∞

‖Anf − f‖p = 0

proving the mean ergodic theorem in all the Lp spaces.
We now concentrate on proving almost sure convergence of Anf to πf

for f ∈ L1(P ). This part is often called the ‘individual ergodic theorem’ or
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‘Birkhoff’s theorem’ . This will be based on an analog of Doob’s inequality for
martingales. First we will establish an inequality called the maximal ergodic
theorem.

Theorem 6.2. (Maximal Ergodic Theorem.) Let f ∈ L1(P ) and for
n ≥ 1, let

E0
n = {ω : sup

1≤j≤n
[f(ω) + f(Tω) + · · ·+ f(T j−1ω)] ≥ 0]}.

Then ∫
E0

n

f(ω) dP ≥ 0

Proof. Let

hn(ω) = sup
1≤j≤n

[f(ω) + f(Tω) + · · ·+ f(T j−1ω)]

= f(ω) + max(0 , hn−1(Tω))

= f(ω) + h+
n−1(Tω)

where

h+
n (ω) = max(0 , hn(ω)).

On E0
n, hn(ω) = h+

n (ω) and therefore

f(ω) = hn(ω)− h+
n−1(Tω) = h+

n (ω)− h+
n−1(Tω).

Consequently,∫
E0

n

f(ω) dP =

∫
E0

n

[h+
n (ω)− h+

n−1(Tω)] dP

≥
∫
E0

n

[h+
n (ω)− h+

n (Tω)] dP (because h+
n−1(ω) ≤ h+

n (ω))

=

∫
E0

n

h+
n (ω) dP −

∫
TE0

n

h+
n (ω) dP (because of inavraince of T )

≥ 0.

The last step follows from the fact that for any integrable function h(ω),∫
E
h(ω) dP is the largest when we take for E the set E = {ω : h(ω) ≥ 0}.
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Now we establish the analog of Doob’s inequality or maximal inequality, or
sometimes referred to as the weaktype 1− 1 inequality.

Lemma 6.3. For any f ∈ L1(P ), and ` > 0, denoting by En the set

En = {ω : sup
1≤j≤n

|(Ajf)(ω)| ≥ `}

we have

P
[
En

] ≤ 1

`

∫
En

|f(ω)| dP.

In particular

P
[
ω : sup

j≥1
|(Ajf)(ω)| ≥ `

] ≤ 1

`

∫
|f(ω)| dP.

Proof. We can assume without loss of generality that f ∈ L1(P ) is nonneg-
ative. Apply the lemma to f − `. If

En = {ω : sup
1≤j≤n

[f(ω) + f(Tω) + · · ·+ f(T j−1ω)]

j
> `},

then ∫
En

[f(ω)− `] dP ≥ 0

or

P [En] ≤ 1

`

∫
En

f(ω) dP.

We are done.

Given the lemma the proof of the almost sure ergodic theorem follows
along the same lines as the proof of the almost sure convergence in the
martingale context. If f ∈ H0 it is trivial. For f = (I − U)g with g ∈ L∞ it

is equally trivial because ‖Anf‖∞ ≤ 2‖g‖∞
n

. So the almost sure convergence
is valid for f = f1 + f2 with f1 ∈ H0 and f2 = (I − U)g with g ∈ L∞. But
such functions are dense in L1(P ). Once we have almost sure convergence
for a dense set in L1(P ), the almost sure convergence for every f ∈ L1(P )
follows by routine approximation using Lemma 6.3. See the proof of Theorem
5.7.
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Exercise 6.1. For any bounded linear transformation A on a Hilbert Space
H , show that the closure of the range of A, i.e RangeA is the orthogonal
complement of the null space {f : A∗f = 0} where A∗ is the adjoint of A.

Exercise 6.2. Show that any almost invariant set differs by a set of measure
0 from an invariant set i.e. if P (A∆T−1A) = 0 then there is a B ∈ F with
P (A∆B) = 0 and T−1B = B.

Although the ergodic theorem implies a strong law of large numbers for
any stationary sequence of random variables, in particular a sequence of
independent identically distributed random variables, it is not quite the end
of the story. For the law of large numbers, we need to know that the limit
πf is a constant, which will then equal

∫
f(ω) dP . To claim this, we need

to know that the invariant σ-field is trivial or essentially consists of the
whole space Ω and the empty set Φ. An invariant measure P is said to be
ergodic for the transformation T , if every A ∈ I i.e every invariant set has
measure 0 or 1. Then every invariant function is almost surely a constant
and πf = E

[
f |I] =

∫
f(ω) dP .

Theorem 6.4. Any product measure is ergodic for the shift.

Proof. Let A be an invariant set. Then A can be approximated by sets An in
the σ-field corresonding to the coordinates from [−n, n]. Since A is invariant
T±2nAn will approximate A just as well. This proves that A actually belongs
to the tail σ-field, the remote past as well as the remote future. Now we
can use Kolmogorov’s 0− 1 law (Theorem 3.15), to assert that P (A) = 0 or
1.

6.2 Structure of Stationary Measures.

Given a space (Ω,F) and a measurable transformation T with a measurable
inverse T−1, we can consider the space M of all T -invariant probability
measures on (Ω,F). The setM, which may be empty, is easily seen to be a
convex set.

Exercise 6.3. Let Ω = Z, the integers, and for n ∈ Z, let Tn = n+ 1. Show
thatM is empty.

Theorem 6.5. A probability measure P ∈ M is ergodic if and only if it is
an extreme point of M.
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Proof. A point of a convex set is extreme if it cannot be written as a nontrivial
convex combination of two other points from that set. Suppose P ∈ M is
not extremal. Then P can be written as nontrivial convex combination of
P1, P2 ∈M, i.e. for some 0 < a < 1 and P1 6= P2, P = aP1 + (1− a)P2. We
claim that such a P cannot be ergodic. If it were, by definition, P (A) = 0 or
1 for every A ∈ I. Since P (A) can be 0 or 1 only when P1(A) = P2(A) = 0
or P1(A) = P2(A) = 1, it follows that for every invariant set A ∈ I, P1(A) =
P2(A). We now show that if two invariant measures P1 and P2 agree on I,
they agree on F . Let f(ω) be any bounded F -measurable function. Consider
the function

h(ω) = lim
n→∞

1

n
[f(ω) + f(Tω) + · · ·+ f(T n−1ω)]

defined on the set E where the limit exists. By the ergodic theorem P1(E) =
P2(E) = 1 and h is I measurable. Moreover, by the stationarity of P1, P2

and the bounded convergence theorem,

EPi [f(ω)] =

∫
E

h(ω)dPi for i = 1, 2

Since P1 = P2 on I and h is I measurable and Pi(E) = 1 for i = 1, 2 we see
that

EP1[f(ω)] = EP2[f(ω)]

Since f is arbitrary this implies that P1 = P2 on F .
Conversely if P is not ergodic, then there is an A ∈ I with 0 < P (A) < 1

and we define

P1(E) =
P (A ∩ E)

P (A)
; P2(E) =

P (Ac ∩ E)

P (Ac)
.

Since A ∈ I it follows that Pi are stationary. Moreover P = P (A)P1 +
P (Ac)P2 and hence P is not extremal.

One of the questions in the theory of convex sets is the existence of
sufficiently many extremal points, enough to recover the convex set by taking
convex combinations. In particular one can ask if any point in the convex
set can be obtained by taking a weighted average of the extremals. The next
theorem answers the question in our context. We will assume that our space
(Ω,F) is nice, i.e. is a complete separable metric space with its Borel sets.
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Theorem 6.6. For any invariant measure P , there is a probability measure
µP on the set Me of ergodic measures such that

P =

∫
Me

Q µP (dQ)

Proof. If we denote by Pω the regular conditional probability distribution of
P given I, which exists (see Theorem 4.4) because (Ω,F) is nice, then

P =

∫
Ω

Pω P (dω)

We will complete the proof by showing that Pω is an ergodic stationary
probability measure for almost all ω with respect to P . We can then view
Pω as a map Ω → Me and µP will be the image of P under the map. Our
integral representation in terms of ergodic measures will just be an immediate
consequence of the change of variables formula.

Lemma 6.7. For any stationary probability measure P , for almost all ω with
respect to P , the regular conditional probability distribution Pω, of P given
I, is stationary and ergodic.

Proof. Let us first prove stationarity. We need to prove that Pω(A) =
Pω(TA) a.e. We have to negotiate carefully through null sets. Since a mea-
sure on the Borel σ-field F of a complete separable metric space is determined
by its values on a countable generating field F0 ⊂ F , it is sufficient to prove
that for each fixed A ∈ F0, Pω(A) = Pω(TA) a.e. P . Since Pω is I measur-
able all we need to show is that for any E ∈ I,∫

E

Pω(A)P (dω) =

∫
E

Pω(TA)P (dω)

or equivalently
P (E ∩ A) = P (E ∩ TA)

This is obvious because P is stationary and E is invariant.
We now turn to ergodicity. Again there is a minefield of null sets to

negotiate. It is a simple exercise to check that if, for some stationary measure
Q, the ergodic theorem is valid with an almost surely constant limit for the
indicator functions 1A with A ∈ F0, then Q is ergodic. This needs to be
checked only for a countable collection of sets {A}. We need therfore only to
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check that any invariant function is constant almost surely with respect to
almost all Pω. Equivalently for any invariant set E, Pω(E) must be shown
almost surely to be equal to 0 or 1. But Pω(E) = χE(ω) and is always 0 or
1. This completes the proof.

Exercise 6.4. Show that any two distinct ergodic invariant measures P1 and
P2 are orthogonal on I, i.e. there is an invariant set E such that P1(E) = 1
and P2(E) = 0.

Exercise 6.5. Let (Ω,F) = ([0, 1),B) and Tx = x + a (mod) 1. If a is irra-
tional there is just one invariant measure P , namely the uniform distribution
on [0, 1). This is seen by Fourier Analysis. See Remark 2.2.∫

ei 2nπ xdP =

∫
ei 2nπ (Tx)dP =

∫
ei 2nπ (x+a)dP = ei 2nπ a

∫
ei 2nπ xdP

If a is irrational ei 2nπ a = 1 if and only if n = 0. Therefore∫
ei 2nπ xdP = 0 for n 6= 0

which makes P uniform. Now let a = p
q

be rational with (p, q) = 1, i.e. p
and q are relatively prime. Then, for any x, the discrete distribution with
probabilities 1

q
at the points {x, x+a, x+2a, . . . , x+(q−1)a} is invariant and

ergodic. We can denote this distribution by Px. If we limit x to the interval
0 ≤ x < 1

q
then x is uniquely determined by Px. Complete the example by

determining all T invariant probability distributions on [0, 1) and find the
integral representation in terms of the ergodic ones.

6.3 Stationary Markov Processes.

Let π(x, dy) be a transition probability function on (X,B), where X is a state
space and B is a σ-field of measurable subsets ofX. A stochastic process with
values inX is a probability measure on the space (Ω,F), where Ω is the space
of sequences {xn : −∞ < n < ∞} with values in X, and F is the product
σ-field. The space (Ω,F) has some natural sub σ-fields. For any two integers
m ≤ n, we have the sub σ-fields, Fmn = σ{xj : m ≤ j ≤ n} corresponding
to information about the process during the time interval [m,n]. In addition
we have Fn = F−∞

n = σ{xj : j ≤ n} and Fm = Fm∞ = σ{xj : j ≥ m} that
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correspond to the past and future. P is a Markov Process on (Ω,F) with
transition probability π(·, ·), if for every n, A ∈ B and P-almost all ω,

P
{
xn+1 ∈ A|Fn} = π(xn , A)

Remark 6.1. Given a π, it is not always true that P exists. A simple but
illuminating example is to take X = {0, 1, · · · , n, · · · } to be the nonnegative
integers and define π(x, x+ 1) = 1 and all the process does is move one step
to the right every time. Such a process if it had started long time back will
be found nowhere today! So it does not exist. On the other hand if we take
X to be the set of all integers then P is seen to exist. In fact there are lots
of them. What is true however is that given any initial distribution µ and
initial time m, there exist a unique process P on (Ω,Fm), i.e. defined on the
future σ-field from time m on, that is Markov with transition probability π
and satisfies P{xm ∈ A} = µ(A) for all A ∈ B.

The shift T acts naturally as a measurable invertible map on the product
space Ω into itself and the notion of a stationary process makes sense. The
following theorem connects stationarity and the Markov property.

Theorem 6.8. Let the transition probability π be given. Let P be a station-
ary Markov process with transition probability π. Then the one dimensional
marginal distribution µ, which is independent of time because of stationarity
and given by

µ(A) = P
{
xn ∈ A

}
is π invariant in the sense that

µ(A) =

∫
π(x,A)µ(dx)

for every set A ∈ B. Conversely given such a µ, there is a unique stationary
Markov process P with marginals µ and transition probability π.

Exercise 6.6. Prove the above Theorem. Use Remark 4.7.

Exercise 6.7. If P is a stationary Markov process on a countable state space
with transition probaility π and invariant marginal distribution µ, show that
the time reversal map that maps {xn} to {x−n} takes P to another stationary
Markov process Q, and express the transition probability π̂ of Q, as explicitly
as you can in terms of π and µ .
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Exercise 6.8. If µ is an invariant measure for π, show that the conditional
expectation map Π : f(·) → ∫

f(y) π ( · , dy) induces a contraction in Lp(µ)
for any p ∈ [1,∞]. We say that a Markov process is reversible if the time
reversed process Q of the previous example coincides with P . Show that P
corresponding to π and µ is reversible if and only if the corresponding Π in
L2(µ) is self-adjoint or symmetric.

Since a given transition probability π may in general have several invariant
measures µ, there will be several stationary Markov processes with transition
probability π. Let M be the set of invariant probability measures for the
transition probabilities π(x, dy) i.e.

M̃ =

{
µ : µ(A) =

∫
X

π(x ,A) dµ(x) for all A ∈ B
}

M̃ is a convex set of probability mesures and we denote by M̃e its (possi-

bly empty) set of extremals. For each µ ∈ M̃, we have the corresponding
stationary Markov process Pµ and the map µ → Pµ is clearly linear. If we
want Pµ to be an ergodic stationary process, then it must be an extremal in

the space of all stationary processes. The extremality of µ ∈ M̃ is therfore a
necessary condition for Pµ to be ergodic. That it is also sufficient is a little
bit of a surprise. The following theorem is the key step in the proof. The
remaining part is routine.

Theorem 6.9. Let µ be an invariant measure for π and P = Pµ the corre-
sponding stationary Markov process. Let I be the σ-field of shift invariant
subsets on Ω. To within sets of P measure 0, I ⊂ F0

0 .

Proof. This theorem describes completely the structure of nontrivial sets in
the σ-field I of invariant sets for a stationary Markov process with transition
probability π and marginal distribution µ. Suppose that the state space can
be partitioned nontrivially i.e. with 0 < µ(A) < 1 into two sets A and Ac

that satisfy π(x,A) = 1 a.e µ on A and π(x,Ac) = 1 a.e µ on Ac. Then the
event

E = {ω : xn ∈ A for all n ∈ Z}
provides a non trivial set in I. The theorem asserts the converse. The
proof depends on the fact that an invariant set E is in the remote past
F−∞

−∞ = ∩nF−∞
n as well as in the remote future F∞

∞ = ∩mFm∞. See the
proof of Theorem 6.4. For a Markov process the past and the future are
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conditionally independent given the present. See Theorem 4.9. This implies
that

P
[
E|F0

0

]
= P

[
E ∩ E|F0

0

]
= P

[
E|F0

0

]
P

[
E|F0

0

]
and must therfore equal either 0 or 1. This in turn means that corresponding
to any invariant set E ∈ I, there exists A ⊂ X that belongs to B, such that
E = {ω : xn ∈ A for all n ∈ Z} up to a set of P measure 0. If the
Markov process starts from A or Ac, it does not ever leave it. That means
0 < µ(A) < 1 and

π(x,Ac) = 0 for µ a.e x ∈ A and π(x,A) = 0 for µ a.e x ∈ Ac

Remark 6.2. One way to generate markov processes with multiple invariant
measures is to start with two markov processes with transition probabilities
πi(xi, dyi) on Xi and invariant measures µi, and consider X = X1 ∪ X2.
Define

π(x,A) =

{
π1(x,A ∩X1) if x ∈ X1

π2(x,A ∩X2) if x ∈ X2

Then any one of the two processes can be going on depending on which world
we are in. Both µ1 and µ2 are invariant measures. We have combined two
distinct possibilities into one. What we have shown is that when we have
multiple invariant measures they essentially arise in this manner.

Remark 6.3. We can therefore look at the convex set of measures µ that are π
invariant, i.e. µΠ = µ. The extremals of this convex set are precisely the ones
that correspond to ergodic stationary processes and they are called ergodic
or extremal invariant measures. If the set of invariant probability measures
is nonempty for some π, then there are enough extremals to recover arbitrary
invariant measure as an integral or weighted average of extremal ones.

Exercise 6.9. Show that any two distinct extremal invariant measures µ1 and
µ2 for the same π are orthogonal on B.

Exercise 6.10. Consider the operator Π on the Lp(µ) spaces corresponding to
a given invariant measure. The dimension of the eigenspace f : Πf = f that
corresponds to the eigenvalue 1, determines the extremality of µ. Clarify this
statement.
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Exercise 6.11. Let Px be the Markov process with stationary transition prob-
ability π(x, dy) starting at time 0 from x ∈ X. Let f be a bounded mea-
surable function on X. Then for almost all x with respect to any extemal
invariant measure ν,

lim
n→∞

1

n
[f(x1) + · · ·+ f(xn)] =

∫
f(y)ν(dy)

for almost all ω with respect to Px.

Exercise 6.12. We saw in the earlier section that any stationary process is
an integral over stationary ergodic processes. If we represent a stationary
Markov Process Pµ as the integral

Pµ =

∫
RQ(dR)

over stationary ergodic processes, show that the integral really involves only
stationary Markov processes with transition probability π, so that the inte-
gral is really of the form

Pµ =

∫
gMe

Pν Q(dν)

or equivalently

µ =

∫
gMe

ν Q(dν).

Exercise 6.13. If there is a reference measure α such that π (x , dy) has a
density p(x, y) with respect to α for every α, then show that any invari-
ant measure µ is absolutely continuous with respect to α. In this case the
eigenspace f : Πf = f in L2(µ) gives a complete picture of all the invariant
measures.

The question of when there is at most one invariant measure for the
Markov process with transition probability π is a difficult one. If we have
a density p(x, y) with respect to a reference measure α and if for each x,
p(x, y) > 0 for almost all y with respect to α, then there can be atmost one
inavriant measure. We saw already that any invariant measure has a density
with respect to α. If there are at least two invariant mesaures, then there
are at least two ergodic ones which are orthogonal. If we denote by f1 and



192 CHAPTER 6. STATIONARY STOCHASTIC PROCESSES.

f2 their densities with respect to α, by orthogonality we know that they are
supported on disjoint ivariant sets, A1 and A2. In particular p(x, y) = 0 for
almost all x on A1 in the support of f1 and almost all y in A2 with respect
to α. By our positivity assumption we must have α(A2) = 0 , which is a
contradiction.

6.4 Mixing properties of Markov Processes.

One of the questions that is important in the theory of Markov Processes
is the rapidity with which the memory of the initial state is lost. There is
no unique way of assessing it and depending on the circumstances this could
happen in many differerent ways at many different rates. Let π(n)(x , dy) be
the n step transition probability. The issue is how the measures π(n)(x , dy)
depend less and less on x as n → ∞. Suppose we measure this dependence
by

ρn = sup
x,y∈X

sup
A∈B
|π(n)(x ,A)− π(n)(y , A)|

then the following is true.

Theorem 6.10. Either ρn ≡ 1 for all n ≥ 1, or ρn ≤ Cθn for some
0 ≤ θ < 1

Proof. From the Chapman-Kolmogorov equations

π(n+m)(x ,A)− π(n+m)(y , A) =

∫
π(m)(z , A)[π(n)(x , dz)− π(n)(y , dz)]

If f(x) is a function with |f(x)−f(y)| ≤ C and µ = µ1−µ2 is the difference of
two probability measures with ‖µ‖ = supA |µ(A)| ≤ δ, then it is elementary
to estimate, using

∫
cdµ = 0,

|
∫
f dµ| = inf

c
|
∫

(f − c)dµ| ≤ 2 inf
c
{sup

x
|f(x)− c|}‖µ‖ ≤ 2

C

2
δ = Cδ

It follows that the sequence ρn is submultiplicative, i.e.

ρm+n ≤ ρmρn

Our theorem follows from this property. As soon as some ρk = a < 1 we
have

ρn ≤ [ρk]
[ n
k
] ≤ Cθn

with θ = a
1
k .
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Although this is an easy theorem it can be applied in some contexts.

Remark 6.4. If π(x , dy) has density p(x, y) with respect to some reference
measure α and p(x, y) ≥ q(y) ≥ 0 for all y with

∫
q(y)dα ≥ δ > 0, then it is

elementary to show that ρ1 ≤ (1− δ).
Remark 6.5. If ρn → 0, we can estimate

|π(n)(x ,A)− π(n+m)(x ,A)| = |
∫

[π(n)(x ,A)− π(n)(y, A)]π(m)(x , dy)| ≤ ρn

and conclude from the estimate that

lim
n→∞

π(n)(x ,A) = µ(A)

exists. µ is seen to be an invariant probability measure.

Remark 6.6. In this context the invariant measure is unique. If β is another
invariant measure because

β(A) =

∫
π(n)(x ,A)β(dy)

for every n ≥ 1

β(A) = lim
n→∞

∫
π(n)(x ,A)β(dy) = µ(A).

Remark 6.7. The stationary process Pµ has the property that if E ∈ F−∞
m

and F ∈ Fn∞ with a gap of k = n−m > 0 then

Pµ[E ∩ F ] =

∫
E

∫
X

π(k)(xm(ω), dx)Px(T
−nF )Pµ(dω)

Pµ[E]Pµ[F ] =

∫
E

∫
X

µ(dx)Px(T
−nF )Pµ(dω)

Pµ[E ∩ F ]− Pµ[E]Pµ[F ] =

∫
E

∫
X

Px(T
−nF )[π(k)(xm(ω), dx)− µ(dx)]Pµ(dω)

from which it follows that

|Pµ[E ∩ F ]− Pµ[E]Pµ[F ]| ≤ ρk Pµ(E)

proving an asymptotic independence property for Pµ.
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There are situations in which we know that an invariant probability mea-
sure µ exists for π and we wish to establish that π(n)(x ,A) converges to µ(A)
uniformly in A for each x ∈ X but not necessarily uniformly over the starting
points x. Uniformity in the starting point is very special. We will illustrate
this by an example.

Example 6.1. The Ornstein-Uhlenbeck process is Markov Chain on the state
space X = R, the real line with transition probability π(x, dy) given by a
Gaussian distribution with mean ρx and variance σ2. It has a density p(x, y)
with respect to the Lebesgue measure so that π(x,A) =

∫
A
p(x, y)dy.

p(x, y) =
1√
2πσ

exp[−(y − ρx)2

2σ2
]

It arises from the ‘auto-regressive’ representation

xn+1 = ρxn + σξn+1

where ξ1, · · · , ξn · · · are independent standard Gaussians. The characteristic
function of any invariant mesure φ(t) satisfies, for every n ≥ 1,

φ(t) = φ(ρt) exp[−σ
2t2

2
] = φ(ρnt) exp[−(

∑n−1
j=0 ρ

2j)σ2t2

2
]

by induction on n. Therefore

|φ(t)| ≤ exp[−(
∑n−1

j=0 ρ
2j)σ2t2

2
]

and this cannot be a characteristic function unless |ρ| < 1 (otherwise by
letting n→∞ we see that φ(t) = 0 for t 6= 0 and therefore discontinuous at
t = 0). If |ρ| < 1, by letting n→∞ and observing that φ(ρnt)→ φ(0) = 1

φ(t) = exp[− σ2t2

2(1− ρ2)
]

The only possible invariant measure is the Gaussian with mean 0 and variane
σ2

(1−ρ2)
. One can verify that this Gaussian is infact an invariant measure. If

|ρ| < 1 a direct computation shows that π(n)(x, dy) is a Gaussian with mean
ρnx and variance σ2

n =
∑n−1

j=0 ρ
2jσ2 → (1 − ρ2)σ2 as n → ∞. Clearly there

is uniform convergence only over bounded sets of starting points x. This is
typical.
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6.5 Central Limit Theorem for Martingales.

If {ξn} is an ergodic stationary sequence of random variables with mean zero
then we know from the ergodic theorem that the mean ξ1···+ξn

n
converges to

zero almost surely. by the law of large numbers. We want to develop some
methods for proving the central limit theorem, i.e. the covergence of the
distribution of ξ1+···+ξn√

n
to some Gaussian distribution with mean 0 variance

σ2. Under the best of situations, since the covariance ρk = E[XnXn+k] may
not be 0 for all k 6= 0, if we assume that

∑
−∞<j<∞ |ρj | <∞, we get

σ2 = lim
n→∞

1

n
E[(ξ1 + · · ·+ ξn)

2]

= lim
n→∞

∑
|j|≤n

(1− |j|
n

)ρj

=
∑

−∞<j<∞
ρj

= ρ0 + 2

∞∑
j=1

ρj .

The standard central limit theorem with
√
n scaling is not likely to work

if the covariances do not decay rapidly enough to be summable. When the
covariances {ρk} are all 0 for k 6= 0 the variance calculation yields σ2 = ρ0

just as in the independent case, but there is no guarantee that the central
limit theorem is valid.

A special situation is when {ξj} are square integrable martingale differ-
ences. With the usual notation for the σ-fields Fmn for m ≤ n (remember
that m can be −∞ while n can be +∞ ) we assume that

E{ξn|Fn−1} = 0 a.e.

and in this case by conditioning we see that ρk = 0 for k 6= 0. It is a useful and
important observation that in this context the central limit theorm always
holds. The distribution of Zn = ξ1+···+ξn√

n
converges to the normal distribution

with mean 0 and variance σ2 = ρ0. The proof is a fairly simple modification
of the usual proof of the central limit theorem. Let us define

ψ(n, j, t) = exp[
σ2t2j

2n
]E

{
exp[i t

ξ1 + · · ·+ ξj√
n

]
}
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and write

ψ(n, n, t)− 1 =

n∑
j=1

[ψ(n, j, t)− ψ(n, j − 1, t)]

leaving us with the estimation of

∆(n, t) =
∣∣ n∑
j=1

[
ψ(n, j, t)− ψ(n, j − 1, t)

]∣∣.

Theorem 6.11. For an ergodic stationary sequence {ξj} of square integrable
martingale diffrences, the central limit theorem is always valid.

Proof. We let Sj = ξ1 + · · ·+ ξj and calculate[
ψ(n, j, t)−ψ(n, j − 1, t)

]
= exp[

σ2t2j

2n
]E

{
exp[it

Sj−1√
n

]

[
exp[it

ξj√
n

]− exp[−σ
2t2

2n
]

]}
.

We can replace it with

θ(n, j, t) = exp[
σ2t2j

2n
]E

{
exp[it

Sj−1√
n

]

[
(σ2 − ξ2

j )t
2

2n

]}
because the error can be controlled by Taylor’s expansion. In fact if we use
the martingale difference property to kill the linear term, we can bound the
difference, in an arbitrary finite interval |t| ≤ T , by

|[ψ(n, j, t)− ψ(n, j − 1, t)
]− θ(n, j, t)|

≤ CTE

{∣∣ exp[it
ξj√
n

]− 1− it ξj√
n

+
t2ξ2

j

2n

∣∣} + CT | exp[−σ
2t2

2n
]− 1 +

σ2t2

2n
|

where CT is a constant that depends only on T . The right hand side is
independent of j because of stationarity. By Taylor expansions in the variable
t√
n

of each of the two terms on the right, it is easily seen that

sup
|t|≤T
1≤j≤n

|[ψ(n, j, t)− ψ(n, j − 1, t)
]− θ(n, j, t)| = o(

1

n
).
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Therefore

sup
|t|≤T

n∑
j=1

|[ψ(n, j, t)− ψ(n, j − 1, t)
]− θ(n, j, t)| = n o(

1

n
)→ 0.

We now concentrate on estimating |∑n
j=1 θ(n, j, t)|. We pick an integer k

which will be large but fixed. We divide [1, n] into blocks of size k with
perhaps an incomplete block at the end. We will now replace θ(n, j, t) by

θk(n, j, t) = exp[
σ2t2kr

2n
]E

{
exp[it

Skr√
n

]

[
(σ2 − ξ2

j )t
2

2n

]}
for kr + 1 ≤ j ≤ k(r + 1) and r ≥ 0.

Using stationarity it is easy to estimate for r ≤ n
k
,

|
k(r+1)∑
j=kr+1

θk(n, j, t) | ≤ C(t)
1

n
E

{ ∣∣ k(r+1)∑
j=kr+1

(σ2 − ξ2
j )

∣∣} = C(t)
k

n
δ(k)

where δ(k) → 0 as k → ∞ by the L1 ergodic theorem. After all {ξ2
j } is a

stationary sequence with mean σ2 and the ergodic theorem applies. Since
the above estimate is uniform in r, the left over incomplete block at the end
causes no problem and there are approximately n

k
blocks, we conclude that

|
n∑
j=1

θk(n, j, t)| ≤ C(t)δ(k).

On the other hand, by stationarity,

n∑
j=1

|θk(n, j, t)− θ(n, j, t)|

≤ n sup
1≤j≤n

|θk(n, j, t)− θ(n, j, t)|

≤ C(t) sup
1≤j≤k

E

{∣∣∣∣ exp[
σ2t2j

2n
] exp[it

Sj−1√
n

]− 1

∣∣∣∣|σ2 − ξ2
j |

}
and it is elementary to show by dominated convergence theorem that the
right hand side tends to 0 as n→∞ for each finite k.

This concludes the proof of the theorem.
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One may think that the assumption that {ξn} is a martingale difference
is too restrictive to be useful. Let {Xn} be any stationary process with zero
mean. We can often succeed in writing Xn = ξn+1 + ηn+1 where ξn is a mar-
tingale difference and ηn is negligible, in the sense that E[(

∑n
j=1 ηj)

2] = o(n).
Then the central limit theorem for {Xn} can be deduced from that of {ξn}. A
cheap way to prove E[(

∑n
j=1 ηj)

2] = o(n) is to establish that ηn = Zn−Zn+1

for some stationary square integrable sequence {Zn}. Then
∑n

j=1 ηj tele-
scopes and the needed estimate is obvious. Here is a way to construct Zn
from Xn so that Xn + (Zn+1 − Zn) is a martingale difference.

Let us define

Zn =

∞∑
j=0

E
{
Xn+j|Fn

}
There is no guarantee that the series converges, but we can always hope.
After all, if the memory is weak, prediction j steps ahead should be futile if
j is large. Therefore if Xn+j is becoming independent of Fn as j gets large
one would expect E

{
Xn+j|Fn

}
to approach E[Xn+j ] which is assumed to be

0. By stationarity n plays no role. If Z0 can be defined the shift operator T
can be used to define Zn(ω) = Z0(T

nω). Let us assume that {Zn} exist and
are square integrable. Then

Zn = E
{
Zn+1|Fn

}
+Xn

or equivalently

Xn = Zn − E
{
Zn+1|Fn

}
= [Zn − Zn+1] + [Zn+1 − E

{
Zn+1|Fn

}
]

= ηn+1 + ξn+1

where ηn+1 = Zn − Zn+1 and ξn+1 = Zn+1 − E
{
Zn+1|Fn

}
. It is easy to see

that E[ξn+1|Fn] = 0.
For a stationary ergodic Markov process {Xn} on state space (X,B),

with transition probability π(x , dy) and invariant measure µ, we can prove
the central limit theorem by this method. Let Yj = f(Xj). Using the Markov
property we can calculate

Z0 =
∞∑
j=0

E[f(Xj)|F0] =
∞∑
j=0

[Πjf ](X0) = [[I −Π]−1f ](X0).
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If the equation [I − Π]U = f can be solved with U ∈ L2(µ), then

ξn+1 = U(Xn+1)− U(Xn) + f(Xn)

is a martingale difference and we have a central limit theorem for
Pn

j=1 f(Xj )√
n

with variance given by

σ2 = EPµ
{
[ ξ0 ]2

}
= EPµ

{
[U(X1)− U(X0) + f(X0)]

2
}
.

Exercise 6.14. Let us consider a two state Markov Chain with states [1, 2].
Let the transition probabilities be given by π(1, 1) = π(2, 2) = p and π(1, 2) =
π(2, 1) = q with 0 < p, q < 1 , p + q = 1 . The invariant measure is
given by µ(1) = µ(2) = 1

2
for all values of p. Consider the random variable

Sn = An−Bn, where An and Bn are respectively the number of visits to the
states 1 and 2 during the first n steps. Prove a central limit theorem for Sn√

n

and calculate the limiting variance as a function σ2(p) of p. How does σ2(p)
behave as p → 0 or 1 ? Can you explain it? What is the value of σ2(1

2
) ?

Could you have guessed it?

Exercise 6.15. Consider a random walk on the nonnegative integers with

π(x , y) =


1
2

for all x = y ≥ 0
1−δ
4

for y = x+ 1, x ≥ 1
1+δ
4

for y = x− 1, x ≥ 1
1
2

for x = 0, y = 1.

Prove that the chain is positive recurrent and find the invariant measure
µ(x) explicitly. If f(x) is a function on x ≥ 0 with compact support solve
explicitly the equation [I−Π]U = f . Show that either U grows exponentially
at infinity or is a constant for large x. Show that it is a constant if and only
if

∑
x f(x)µ(x) = 0. What can you say about the central limit theorem for∑n

j=0 f(Xj) for such functions f?

6.6 Stationary Gaussian Processes.

Considering the importance of Gaussian distributions in Probability theory,
it is only natural to study stationary Gaussian processes, i.e. stationary
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processes {Xn} that have Gaussian distributions as their finite dimensional
joint distributions. Since a joint Gaussian distribution is determined by its
means and covariances we need only specify E[Xn] and Cov (Xn, Xm) =
E[XnXm]−E[Xn]E[Xm]. Recall that the joint density on Rn of N Gaussian
random variables with mean m = {mi} and covariance C = {ρi,j} is given
by

p(y) = [
1√
2π

]N
1√
DetC

exp[−1

2
< (y −m), C−1(y −m) >]

Here m is the vector of means and C−1 is the inverse of the positive definite
covariance matrix C. If C only positive semidefinite the Gaussian distribu-
tion lives on a lower dimensional hyperplane and is singular. By stationarity
E[Xn] = c is independent of n and Cov (Xn, Xm) = ρn−m can depend only on
the difference n−m. By symmetry ρk = ρ−k. Because the covariance matrix
is always positive semidefinite the sequence ρk has the positive definiteness
property

n∑
k,j=1

ρj−kzj z̄k ≥ 0

for all choices of n and complex numbers z1 · · · , zn. By Bochner’s theorem
(see Theorem 2.2) there exists a nonnegative measure µ on the circle that is
thought of as S = [0, 2π] with end points identified such that

ρk =

∫ 2π

0

exp[ikθ]dµ(θ)

and because of the symmetry of ρk, µ is symmetric as well with respect to
θ → 2π − θ. It is convenient to assume that c = 0. One can always add
it back. Given a Gaussian process it is natural to carry out linear
operations that will leave the Gaussian character unchanged. Rather than
working with the σ-fields Fmn we will work with the linear subspaces Hm

n

spanned by {Xj : m ≤ j ≤ n} and the infinite spans Hn = ∨m≤nHm
n and

Hm = ∨n≥mHm
n , that are considered as linear subspaces of the Hilbertspace

H = ∨ m,n
n≥m
Hm
n which lies inside L2(P ). But H is a small part of L2(P ) ,

consisting only of linear functions of {Xj}. The analog of Kolmogorov’s tail
σ-field are the subspaces ∧mHm and ∧nHn that are denoted byH∞ andH−∞.
The analog of Kolmogorov’s zero-one law would be that these subspaces are
trivial having in them only the zero function. The symmetry in ρk implies
that the processes {Xn} and {X−n} have the same underlying distributions
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so that both tails behave identically. A stationary Gaussian process {Xn}
with mean 0 is said to be purely non determinstic if the tail subspaces are
trivial.

In finite dimensional theory a Covarance matrix can be diagonalized or
better still written in special form T ∗T , which gives a linear representation
of the Gaussian random variables in terms of canonical or independent stan-
dard Gaussian random variables. The point to note is that if X is standard
Gaussian with mean zero and covariance I = {δi,j , then for any linear tr-
nasformation T , Y = TX iagain Gaussian with mean zero and covariance
C = TT ∗. In other words if

Yi =
∑
j

ti,kXk

then

Ci,j =
∑
k

ti,ktj,k

In fact for any C we can find a T which is upper or lower diagonal i.e. ti,k = 0
for i > k or i < k. If the indices correspond to time, this can be interpreted
as a causal representation interms of current and future or past variables
only.

The following questions have simple answers.

Q1. When does a Gaussian process have a moving average representation in
terms of independent Gaussians i.e a representation of the form

Xn =

∞∑
m=−∞

an−mξm

with ∞∑
n=−∞

a2
n <∞

in terms of i.i.d. Gaussians {ξk} with mean 0 and variance 1 ?

If we have such a representation then the Covariance ρk is easily calculated
as the convolution

ρk =
∑
j

ajaj+k = [a ∗ ā](k)
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and that will make {ρk} the Fourier coefficients of the function

f = |
∑
j

aje
i j θ|2

which is the square of a function in L2(S). In other words the spectral
measure µ will be absolutely continuous with a density f with repect to the
normalized Lebesgue measure dθ

2π
. Conversely if we have a µ with a density

f its square root will be a function in L2 and will therefore have Fourier
coefficients an in l2 and a moving average representation holds in terms of
i.i.d. random variables with these weights..

Q2. When does a Gaussian Process have a representation that is causal
i.e. of the form

Xn =
∑
j≥0

ajξn−j

with ∑
j≥0

a2
j <∞?

If we do have a causal representation then the remote past of the {Xk} process
is clearly part of the remote past of the {ξk} process. By Kolmogorov’s
zero-one law, the remote past for independent Gaussians is trivial and a
causal representation is therefore possible for {Xk} only if its remote past
is trivial. The converse is true as well. The subspace Hn is spanned by
Hn−1 and Xn. Therefore either Hn = Hn−1, or Hn−1 has codimension 1 in
Hn. In the former case by stationarity Hn = Hn−1 for every n. This inturn
implies H−∞ = H = H∞. Assuming that the process is not identically
zero i.e. ρ0 = µ(S) > 0 this makes the remote past or future the whole
thing and definitely nontrivial. So we may assume that Hn = Hn−1 ⊕ en

where en is a one dimensional subspace spanned by a unit vector ξn. Since
all our random variables are linear combinations of a Gaussian collection
they all have Gaussian distributions. We have the shift operator U satsfying
UXn = Xn+1 and we can assume with out loss of generality that Uξn = ξn+1

for every n. If we start with X0 in our Hilbert space

X0 = a0ξ0 +R−1

with R1 ∈ Hn−1. We can continue and write

R−1 = a1ξ−1 +R−2
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and so on. We will then have for every n

X0 = a0ξ0 + a1ξ−1 + · · ·+ anξ−n +R−(n+1)

with R−(n+1) ∈ H−(n+1). Since ∧nH−n = {0} we conclude that the the
expansion

X0 =
∞∑
j=0

ajξ−j

is valid.

Q3. What are the conditions on the spectral density f in order that the
process may admit a causal representation. From our answer to Q1. we

know that we have to solve the following analytical problem. Given the
spectral measure µ with a non negative density f ∈ L1(S), when can we
write f = |g|2 for some g ∈ L2(S), that admits a Fourier representation
g =

∑
j≥0 aje

i j θ involving only positive frequencies. This has the following
neat solution which is far from obvious.

Theorem 6.12. The process determined by the spectral density f admits a
causal representation if and only if f(θ) satisfies∫

S

log f(θ)dθ > −∞

Remark 6.8. Notice that the condition basically prevents f from vanishing
on a set of positive measure or having very flat zeros.

The proof will use methods from the theory of functions of a complex variable.
Define

Proof.

g(θ) =
∑
n≥0

cn exp[i n θ]

as the Fourier series of some g ∈ L2(S). Assume cn 6= 0 for some n > 0.
In fact we can assume without loss of generality that c0 6= 0 by removing a
suitable factor of ei k θ which will not affect |g(θ)|. Then we will show that

1

2π

∫
S

log |g(θ)|dθ ≥ log |c0|.
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Consider the function

G(z) =
∑
n≥0

cnz
n

as an analytic function in the disc |z| < 1. It has boundary values

lim
r→1

G(reiθ) = g(θ)

in L2(S). Since G is an analytic function we know, from the theory of
functions of a complex variable, thatlog |G(reiθ)| is subharmonic and has the
mean value property∫

S

log |G(reiθ)|dθ ≥ log |G(0)| = log |c0|

Since G(reiθ) has a limit in L2(S), the positive part of log |G| which is domi-
nated by |G| is uniformly integrable. For the negative part we apply Fatou’s
lemma and derive our estimate.

Now for the converse. Let f ∈ L1(S). Assume
∫
S

log f(θ)dθ > −∞ or
equivalently log f ∈ L1(S). Define the Fourier coefficients

an =
1

4π

∫
S

log f(θ) exp[i n θ] dθ.

Because log f is integrable {an} are uniformly bounded and the power series

A(z) =
∑

anz
n

which is well defined for |z| < 1. We define

G(z) = exp[A(z)].

We will show that

lim
r→1

G(reiθ) = g(θ)

exists in L2(S) and f = |g|2, g being the boundary value of an analytic
function in the disc. The integral condition on log f is then the necessary
and sufficient condition for writing f = |g|2 with g involving only nonnegative
frequencies.
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|G(reiθ)|2 = exp
[
2 Real Part A(reiθ)

]
= exp

[
2

∞∑
j=0

ajr
j cos jθ

]
= exp

[
2

∞∑
j=0

rj cos jθ[
1

4π

∫
S

log f(ϕ) cos jϕdϕ]
]

= exp
[ 1

2π

∫
S

log f(ϕ)[
∞∑
j=0

rj cos jθ cos jϕdϕ]
]

= exp
[ ∫

S

log f(ϕ)K(r, θ, ϕ)dϕ
]

≤
∫
S

f(ϕ)K(r, θ, ϕ)dϕ

Here K is the Poisson Kernel for the disc

K(r, θ, ϕ) =
1

2π

∞∑
j=0

rj cos θ cosϕ

is nonnegative and
∫
S
K(r, θ, ϕ)dϕ = 1. The last step is a consequence of

Jensen’s inequality. The function

fr(θ) =

∫
S

f(ϕ)K(r, θ, ϕ)dϕ

converges to f as r → 1 in L1(S) by the properties of the Poisson Kernel. It
is therefore uniformly integrable. Since |G(reiθ)|2 is dominated by fr we get
uniform integrability for |G|2 as r → 1. It is seen now that G has a limit g
in L2(S) as r → 1 and f = |g|2.

One of the issues in the theory of time series is that of prediction. We
have a stochastic process {Xn} that we have observed for times n ≤ −1 and
we want to predict X0. The best predictor is EP [X0|F−1] or in the Gaussian
linear context it is the compuation of the projection of X0 into H−1. If we
have a moving average representation, even a causal one, while it is true that
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Xj is spanned by {ξk : k ≤ j} the converse may not be true. If the two spans
were the same, then the best predictor for X0 is just

X̂0 =
∑
j≥1

ajξ−j

obtained by dropping one term in the original representation. In fact in
answering Q2 the construction yielded a representation with this property.
The quantity |a0|2 is then the prediction error. In any case it is a lower
bound.

Q4. What is the value of prediction error and how do we actually find the
predictor ?

The situation is some what muddled. Let us assume that we have a purely
nondeterministic process i.e. a process with a spectral density satisfying∫
S

log f(θ)dθ > −∞. Then f can be represented as

f = |g|2

with g ∈ H2, where by H2 we denote the subspace of L2(S) that are boundary
values of analytic functions in the disc |z| < 1, or equivalently functions
g ∈ L2(S) with only nonnegative frequencies. For any such g, we have an
analytic function

G(z) = G(rei θ) =
∑
n≥0

anr
nei n θ.

For any choice of g ∈ H2 with f = |g|2, we have

|G(0)|2 = |a0|2 ≤ exp
[ 1

2π

∫
S

log f(θ)dθ
]
. (6.1)

There is a choice of g contstructed in the proof of the thorem for which

|G(0)|2 = exp
[ 1

2π

∫
S

log f(θ)dθ
]

(6.2)

The prediction error σ2(f), that depends only on f and not on the choice
of g, also satisfies
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σ2(f) ≥ |G(0)|2 (6.3)

for every choice of g ∈ H2 with f = |g|2. There is a choice of g such that

σ2(f) = |G(0)|2 (6.4)

Therefore from (6.1) and (6.4)

σ2(f) ≤ exp
[ 1

2π

∫
S

log f(θ)dθ
]

(6.5)

On the other hand from (6.2) and (6.3)

σ2(f) ≥ exp
[ 1

2π

∫
S

log f(θ)dθ
]

(6.6)

We do now have an exact formula

σ2(f) = exp
[ 1

2π

∫
S

log f(θ)dθ
]

(6.7)

for the prediction error.
As for the predictor, it is not quite that simple. In principle it is a limit

of linear combinations of {Xj : j ≤ 0} and may not always have a simple
concrete representation. But we can understand it a little better. Let us
consider the spaces H and L2(S;µ) of square integrable functions on S with
respect to the spectral measure µ. There is a natural isomorphism between
the two Hilbert spaces, if we map∑

ajXj ←→
∑

aje
i j θ

The problem then is the question of approximating ei θ in L2(S;µ) by linear
combinations of {ei j θ : j ≤ 0}. We have already established that the error,
which is nonzero in the purely nondeterministic case, i.e when dµ = 1

2π
f(θ)dθ

for some f ∈ L1(S) satisfying∫
S

log f(θ)dθ > −∞,

is given by

σ2(f) = exp
[ 1

2π

∫
S

log f(θ)dθ
]
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We now want to find the best approximation.
In order to get at the predictor we have to make a very special choice

of the representation f = |g|2. Simply demanding g ∈ L2(S) will not even
give causal representations. Demanding g ∈ H2 will always give us causal
representation, but there are too many of these. If we mutiply G(z) by
an analytic function V (z) that has boundary values v(θ) satisfying |v(θ)| =
|V (ei θ)| ≡ 1 on S, then gv is another choice. If we demand that

|G(0)|2 = exp
[ 1

2π

∫
S

log f(θ)dθ
]

(6.8)

there is atleast one choice that will satisfy it. There is still ambiguity, albeit
a trivial one among these, for we can always multiply g by a complex number
of modulus 1 and that will not change anything of consequence. We have
the following theorem.

Theorem 6.13. The representation f = |g|2 with g ∈ H2, and satisfying
(6.8), is unique to within a multiplicative constant of modulus 1. In other
words if f = |g1|2 = |g2|2 with both g1 and g2 satisfying (8), then g1 = αg2

on S, where α is a complex number of modulus 1.

Proof. Let F (rei θ) = log |G(rei θ)|. It is a subharmonic function and

lim
r→1

F (rei θ) =
1

2
log f(θ)

Because
lim
r→1

G(rei θ) = g(θ)

in L2(S), the functions are uniformly integrable in r. The positive part of the
logarithm F is well controlled and therefore uniformly uniformly integrable.
Fatou’s lemma is applicable and we should always have

lim sup
r→1

1

2π

∫
S

F (rei θ)dθ ≤ 1

4π

∫
S

log f(θ)dθ

But because F is subharmonic its average value on a circle of radius r around
0 is nondecreasing in r, and the lim sup is the same as the sup. Therefore

F (0) ≤ sup
0≤r<1

1

2π

∫
S

F (rei θ)dθ = lim sup
r→1

1

2π

∫
S

F (rei θ)dθ ≤ 1

4π

∫
S

log f(θ)dθ
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Since we have equality at both ends that implies a lot of things. In particular
F is harmonic and and is represented via the Poisson integral interms of its
boundary value 1

2
log f . In particular G has no zeros in the disc. Obviuosly F

is uniquely determined by log f , and by the Cauchy-Riemann equations the
imaginary part of logG is determined upto an additive constant. Therefore
the only ambiguity in G is a multiplicative constant of modulus 1.

Given the process {Xn} with trivial tail subspaces, we saw earlier that it
has a representation

Xn =

∞∑
j=0

ajξn−j

in terms of standard i.i.d Gaussians and from the construction we also know
that ξn ∈ Hn for each n. In particular ξ0 ∈ H0 and can be approximated by
linear combinations of {Xj : j ≤ 0}. Let us suppose that h(θ) represents ξ0 in
L2(S; f). We know that h(θ) is in the linear span of {ei j θ : j ≤ 0}. We want
to find the function h. If ξ0 ←→ h, then by the nature of the isomorphism
ξn ←→ ei n θh and

1 =
∞∑
j=0

aje
−i j θh(θ)

is an orthonormal expansion in L2(S; f). Also if we denote by

G(z) =

∞∑
j=0

ajz
j

then the boundary function g(θ) = limr→1G(rei θ) has the property

g(−θ)h(θ) = 1

and so

h(θ) =
1

g(−θ)
Since the function G that we constructed has the property

|G(0)|2 = |a0|2 = σ2(f) = exp
[ 1

2π

∫
S

log f(θ) dθ
]

it is the canonical choice determined earlier, to with in a multiplicative con-
stant of modulus 1. The predictor then is clearly represented by the function

1̂(θ) = 1− a0h(θ) = 1− g(0)

g(−θ)



210 CHAPTER 6. STATIONARY STOCHASTIC PROCESSES.

Example 6.2. A wide class of examples are given by densities f(θ) that are
rational trigonometric polynomials of the form

f(θ) =
|∑Aje

i j θ|2
|∑Bjei j θ|2

We can always mutiply by ei k θ inside the absolute value and assume that

f(θ) =
|P (ei θ)|2
|Q(ei θ)|2

where P (z) and Q(z) are polynomials in the complex variable z. The sym-
metry of f under θ → −θ means that the coefficients in the polynomial have
to be real. The integrability of f will force the polynomial Q not to have any
zeros on the circle |z| = 1. Given any two complex numbers c and z, such
that |z| = 1 and c 6= 0

|z − c| = |z̄ − c̄| = |1
z
− c̄| = |1− c̄z| = |c||z − 1

c̄
|

This means in our representation for f , first we can omit terms that involve
powers of z that have only modulus 1 on S. Next, any term (z − c) that
contributes a nonzero root c with |c| < 1 can be replaced by c(z − 1

c̄
) and

thus move the root outside the disc without changing the value of f . We can
therefore rewrite

f(θ) = |g(θ)|2
with

G(z) =
P (z)

Q(z)

with new polynomials P and Q that have no roots inside the unit disc and
with perhaps P alone having roots on S . Clearly

h(θ) =
Q(ei θ)

P (ei θ)

If P has no roots on S, we have a nice convergent power series for Q
P

with a
radius of convergence larger than 1, and we are in a very good situation. If
P = 1, we are in an even better situation with the predictor expressed as a
finite sum. If P has a root on S, then it could be a little bit of a mess as the
next exercise shows.



6.6. STATIONARY GAUSSIAN PROCESSES. 211

Exercise 6.16. Assume that we have a representation of the form

Xn = ξn − ξn−1

in terms of standard i.i.d. Gaussians. How will you predict X1 based on
{Xj : j ≤ 0} ?

Exercise 6.17. An autoregressive scheme is a representation of the form

Xn =

k∑
j=1

ajXn−j + σξn

where ξn is a standard Gaussian indepenedent of {(Xj , ξj) : j ≤ (n− 1)}. In
other words the predictor

X̂n =
k∑
j=1

ajXn−j

and the prediction error σ2 are specified for the model. Can you always
find a stationary Gaussian process {Xn} with spectral density f(θ), that is
consistent with the model?
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