
Chapter 3

Independent Sums

3.1 Independence and Convolution

One of the central ideas in probabilty is the notion of independence. In
intuitive terms two events are independent if they have no influence on each
other. The formal definition is

Definition 3.1. Two events A and B are said to be independent if

P [A ∩ B] = P [A]P [B].

Exercise 3.1. If A and B are independent prove that so are Ac and B.

Definition 3.2. Two random variables X and Y are independent if the
events X ∈ A and Y ∈ B are independent for any two Borel sets A and
B on the line i.e.

P [X ∈ A, Y ∈ B] = P [X ∈ A]P [Y ∈ B].

for all Borel sets A and B.

There is a natural extension to a finite or even an infinite collection of
random variables.
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52 CHAPTER 3. INDEPENDENT SUMS

Definition 3.3. A finite collection collection {Xj : 1 ≤ j ≤ n} of random
variables are said to be independent if for any n Borel sets A1, . . . , An on the
line

P

[
∩1≤j≤n [Xj ∈ Aj]

]
= Π1≤j≤nP [Xj ∈ Aj ].

Definition 3.4. An infinite collection of random variables is said to be in-
dependent if every finite subcollection is independent.

Lemma 3.1. Two random variables X, Y defined on (Ω,Σ, P ) are indepen-
dent if and only if the measure induced on R2 by (X, Y ), is the product
measure α × β where α and β are the distributions on R induced by X and
Y respectively.

Proof. Left as an exercise.

The important thing to note is that if X and Y are independent and one
knows their distributions α and β, then their joint distribution is automati-
cally determined as the product measure.

If X and Y are independent random variables having α and β for their
distributions, the distribution of the sum Z = X+Y is determined as follows.
First we construct the product measure α×β on R×R and then consider the
induced distribution of the function f(x, y) = x+y. This distribution, called
the convolution of α and β, is denoted by α ∗ β. An elementary calculation
using Fubini’s theorem provides the following identities.

(α ∗ β)(A) =

∫
α(A− x) dβ =

∫
β(A− x) dα (3.1)

In terms of characteristic function, we can express the characteristic func-
tion of the convolution as

∫
exp[ i t x ]d(α ∗ β) =

∫ ∫
exp[ i t (x+ y) ] d αd β

=

∫
exp[ i t x ] d α

∫
exp[ i t x ] d β
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or equivalently

φα∗β(t) = φα(t)φβ(t) (3.2)

which provides a direct way of calculating the distributions of sums of inde-
pendent random variables by the use of characteristic functions.

Exercise 3.2. If X and Y are independent show that for any two measurable
functions f and g, f(X) and g(Y ) are independent.

Exercise 3.3. Use Fubini’s theorem to show that if X and Y are independent
and if f and g are measurable functions with both E[|f(X)|] and E[|g(Y )|]
finite then

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Exercise 3.4. Show that if X and Y are any two random variables then
E(X + Y ) = E(X) + E(Y ). If X and Y are two independent random
variables then show that

Var(X + Y ) = Var(X) + Var(Y )

where

Var(X) = E
[
[X −E[X]]2

]
= E[X2]− [E[X]]2.

If X1, X2, · · · , Xn are n independent random variables, then the distri-
bution of their sum Sn = X1 + X2 + · · ·+ Xn can be computed in terms of
the distributions of the summands. If αj is the distribution of Xj , then the
distribution of µn of Sn is given by the convolution µn = α1 ∗ α2 ∗ · · · ∗ αn
that can be calculated inductively by µj+1 = µj ∗ αj+1. In terms of their
characteristic functions ψn(t) = φ1(t)φ2(t) · · ·φn(t). The first two moments
of Sn are computed easily.

E(Sn) = E(X1) + E(X2) + · · ·E(Xn)

and

Var(Sn) = E[Sn −E(Sn)]
2

=
∑
j

E[Xj −E(Xj)]
2

+2
∑

1≤i<j≤n
E[Xi − E(Xi)][Xj − E(Xj)].
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For i 6= j, because of independence

E[Xi − E(Xi)][Xj − E(Xj)] = E[Xi −E(Xi)]E[Xj − E(Xj)] = 0

and we get the formula

Var(Sn) = Var(X1) + Var(X2) + · · ·+ Var(Xn). (3.3)

3.2 Weak Law of Large Numbers

Let us look at the distribution of the number of succeses in n independent
trials, with the probability of success in a single trial being equal to p.

P{Sn = r} =

(
n

r

)
pr(1− p)n−r

and

P{|Sn − np| ≥ nδ} =
∑

|r−np|≥nδ

(
n

r

)
pr(1− p)n−r

≤ 1

n2δ2

∑
|r−np|≥nδ

(r − np)2

(
n

r

)
pr(1− p)n−r (3.4)

≤ 1

n2δ2

∑
1≤r≤n

(r − np)2

(
n

r

)
pr(1− p)n−r

=
1

n2δ2
E[Sn − np]2 =

1

n2δ2
Var(Sn) (3.5)

=
1

n2δ2
np(1− p) (3.6)

=
p(1− p)
nδ2

.

In the step (3.4) we have used a discrete version of the simple inequality∫
x:g(x)≥a

g(x)dα ≥ g(a)α[x : g(x) ≥ a]

with g(x) = (x− np)2 and in (3.6) have used the fact that Sn = X1 +X2 +
· · · + Xn where the Xi are independent and have the simple distribution



3.2. WEAK LAW OF LARGE NUMBERS 55

P{Xi = 1} = p and P{Xi = 0} = 1 − p. Therefore E(Sn) = np and
Var(Sn) = nVar(X1) = np(1− p)

It follows now that

lim
n→∞

P{|Sn − np| ≥ nδ} = lim
n→∞

P{|Sn
n
− p| ≥ δ} = 0

or the average Snn converges to p in probability. This is seen easily to
be equivalent to the statement that the distribution of Sn

n
converges to the

distribution degenerate at p. See (2.12).
The above argument works for any sequence of independent and iden-

tically distributed random variables. If we assume that E(Xi) = m and
Var(Xi) = σ2 < ∞, then E(Sn

n
) = m and Var(Sn

n
) = σ2

n
. Chebychev’s

inequality states that for any random variable X

P{|X − E[X]| ≥ δ} =

∫
|X−E[X]|≥δ

dP

≤ 1

δ2

∫
|X−E[X]|≥δ

[X − E[X]]2dP

=
1

δ2

∫
[X −E[X]]2dP

=
1

δ2
Var(X). (3.7)

This can be used to prove the weak law of large numbers for the gen-
eral case of independent identically distributed random variables with finite
second moments.

Theorem 3.2. If X1, X2 . . . , Xn, . . . is a sequence of independent identically
distributed random variables with E[Xj ] ≡ m and VarXj ≡ σ2 then for

Sn = X1 +X2 + · · ·+Xn

we have

lim
n→∞

P

[
|Sn
n
−m| ≥ δ

]
= 0

for any δ > 0.
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Proof. Use Chebychev’s inequality to estimate

P

[
|Sn
n
−m| ≥ δ

]
≤ 1

δ2
Var(

Sn
n

) =
σ2

nδ2
.

Actually it is enough to assume that E|Xi| <∞ and the existence of the
second moment is not needed. We will provide two proofs of the statement

Theorem 3.3. If X1, X2, · · ·Xn are independent and identically distributed
with a finite first moment and E(Xi) = m, then X1+X2+···+Xn

n
converges to m

in probability as n→∞.

Proof. 1. Let C be a large constant and let us define XC
i as the truncated

random variable XC
i = Xi if |Xi| ≤ C and XC

i = 0 otherwise. Let Y C
i =

Xi −XC
i so that Xi = XC

i + Y C
i . Then

1

n

∑
1≤i≤n

Xi =
1

n

∑
1≤i≤n

XC
i +

1

n

∑
1≤i≤n

Y C
i

= ξCn + ηCn .

If we denote by aC = E(XC
i ) and bC = E(Y C

i ) we always have m =
aC + bC . Consider the quantity

δn = E[| 1
n

∑
1≤i≤n

Xi −m|]

= E[|ξCn + ηCn −m|]
≤ E[|ξCn − aC |] + E[|ηCn − bC |]

≤
[
E[|ξCn − aC |2]

] 1
2

+ 2E[|Y C
i |]. (3.8)

As n → ∞, the truncated random variables XC
i are bounded and indepen-

dent. Theorem 3.2 is applicable and the first of the two terms in (3.8) tends
to 0. Therefore taking the limsup as n→∞, for any 0 < C <∞,

lim sup
n→∞

δn ≤ 2E[|Y C
i |].

If we now let the cutoff level C to go to infinity, by the integrability of Xi,
E

[|Y C
i |

]→ 0 as C →∞ and we are done. The final step of establishing that
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for any sequence Yn of random variables, E[|Yn|]→ 0 implies that Yn → 0 in
probability, is left as an exercise and is not very different from Chebychev’s
inequality.

Proof 2. We can use characteristic functions. If we denote the characteristic
function ofXi by φ(t), then the characteristic function of 1

n

∑
1≤i≤nXi is given

by ψn(t) = [φ( t
n
)]n. The existence of the first moment assures us that φ(t)

is differentiable at t = 0 with a derivative equal to im where m = E(Xi).
Therefore by Taylor expansion

φ(
t

n
) = 1 +

im t

n
+ o(

1

n
).

Whenever nan → z it follows that (1 + an)
n → ez. Therefore,

lim
n→∞

ψn(t) = exp[ im t ]

which is the characteristic function of the distribution degenerate at m.
Hence the distribution of Sn

n
tends to the degenerate distribution at the point

m. The weak law of large numbers is thereby established.

Exercise 3.5. If the underlying distribution is a Cauchy distribution with
density 1

π(1+x2)
and characteristic function φ(t) = e−|t|, prove that the weak

law does not hold.

Exercise 3.6. The weak law may hold sometimes even if the mean does not
exist. If we dampen the tails of the Cauchy ever so slightly with a density
f(x) = c

(1+x2) log(1+x2)
, show that the weak law of large numbers holds.

Exercise 3.7. In the case of the Binomial distribution with p = 1
2
, use Stir-

ling’s formula

n! '
√

2π e−n nn+12

to estimate the probability ∑
r≥nx

(
n

r

)
1

2n

and show that it decays geometrically in n. Can you calculate the geometric
ratio

ρ(x) = lim
n→∞

[ ∑
r≥nx

(
n

r

)
1

2n

] 1
n

explicitly as a function of x for x > 1
2
?
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3.3 Strong Limit Theorems

The weak law of large numbers is really a result concerning the behavior of

Sn
n

=
X1 +X2 + · · ·+Xn

n

where X1, X2, · · · , Xn, . . . is a sequence of independent and identically dis-
tributed random variables on some probability space (Ω,B, P ). Under the
assumption that Xi are integrable with an integral equal to m, the weak law
asserts that as n → ∞, Sn

n
→ m in Probability. Since almost everywhere

convergence is generally stronger than convergence in Probability one may
ask if

P

[
ω : lim

n→∞
Sn(ω)

n
= m

]
= 1

This is called the Strong Law of Large Numbers. Strong laws are statements
that hold for almost all ω.

Let us look at functions of the form fn = χ
An

. It is easy to verify that
fn → 0 in probability if and only if P (An)→ 0. On the other hand

Lemma 3.4. (Borel-Cantelli lemma). If∑
n

P (An) <∞

then
P

[
ω : lim

n→∞
χ

An
(ω) = 0

]
= 1.

If the events An are mutually independent the converse is also true.

Remark 3.1. Note that the complementary event[
ω : lim sup

n→∞
χ

An
(ω) = 1

]
is the same as ∩∞n=1 ∪∞j=n Aj, or the event that infinitely many of the events
{Aj} occcur.

The cnclusion of the next exercise will be used in the proof.
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Exercise 3.8. Prove the following variant of the monotone convergence the-
orem. If fn(ω) ≥ 0 are measurble functions the set E = {ω : S(ω) =∑

n fn(ω) < ∞} is measurable and S(ω) is a measurable function on E. If
each fn is integrable and

∑
nE[fn] < ∞ then P [E] = 1, S(ω) is integrable

and E[S(ω)] =
∑

nE[fn(ω)].

Proof. By the previous exercise if
∑

n P (An) <∞, then
∑

n χAn
(ω) = S(ω)

is finite almost everywhere and

E(S(ω)) =
∑
n

P (An) <∞.

If an infinite series has a finite sum then the n-th term must go to 0, thereby
proving the direct part. To prove the converse we need to show that if∑

n P (An) = ∞, then limm→∞ P (∪∞n=mAn) > 0. We can use independence
and the continuity of probability under monotone limits, to calculate for
every m,

P (∪∞n=mAn) = 1− P (∩∞n=mA
c
n)

= 1−
∞∏
n=m

(1− P (An)) (by independence)

≥ 1− e−
P∞

m P (An)

= 1

and we are done. We have used the inequality 1 − x ≤ e−x familiar in the
study of infinite products.

Another digression that we want to make into measure theory at this point
is to discuss Kolmogorov’s consistency theorem. How do we know that there
are probability spaces that admit a sequence of independent identically dis-
tributed random variables with specified distributions? By the construction
of product measures that we outlined earlier we can construct a measure on
Rn for every n which is the joint distribution of the first n random variables.
Let us denote by Pn this probability measure on Rn. They are consistent
in the sense that if we project in the natural way from Rn+1 → Rn, Pn+1

projects to Pn. Such a family is called a consistent family of finite dimen-
sional distributions. We look at the space Ω = R∞ consisting of all real
sequences ω = {xn : n ≥ 1} with a natural σ-field Σ generated by the field
F of finite dimensional cylinder sets of the form B = {ω : (x1, · · · , xn) ∈ A}
where A varies over Borel sets in Rn and varies over positive integers.
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Theorem 3.5. (Kolmogorov’s Consistency Theorem). Given a con-
sistent family of finite dimensional distributions Pn, there exists a unique
P on (Ω,Σ) such that for every n, under the natural projection πn(ω) =
(x1, · · · , xn), the induced measure Pπ−1

n = Pn on Rn.

Proof. The consistency is just what is required to be able to define P on F
by

P (B) = Pn(A).

Once we have P defined on the field F , we have to prove the countable
additivity of P on F . The rest is then routine. Let Bn ∈ F and Bn ↓ Φ,
the empty set. If possible let P (Bn) ≥ δ for all n and for some δ > 0. Then
Bn = π−1

kn
Akn for some kn and without loss of generality we assume that

kn = n, so that Bn = π−1
n An for some Borel set An ⊂ Rn. According to

Exercise 3.8 below, we can find a closed bounded subset Kn ⊂ An such that

Pn(An −Kn) ≤ δ

2n+1

and define Cn = π−1
n Kn and Dn = ∩nj=1Cj = π−1

n Fn for some closed bounded
set Fn ⊂ Kn ⊂ Rn. Then

P (Dn) ≥ δ −
n∑
j=1

δ

2j+1
≥ δ

2
.

Dn ⊂ Bn, Dn ↓ Φ and each Dn is nonempty. If we take ω(n) = {xnj : j ≥ 1}
to be an arbitrary point from Dn, by our construction (xn1 , · · ·xnm) ∈ Fm for
n ≥ m. We can definitely choose a subsequence (diagonlization) such that
xnk
j converges for each j producing a limit ω = (x1, · · · , xm, · · · ) and, for

every m, we will have (x1, · · · , xm) ∈ Fm. This implies that ω ∈ Dm for
every m, contradicting Dn ↓ Φ. We are done.

Exercise 3.9. We have used the fact that given any borel set A ⊂ Rn, and a
probability measure α on Rn, for any ε > 0, there exists a closed bounded
subset Kε ⊂ A such that α(A−Kε) ≤ ε. Prove it by showing that the class
of sets A with the above property is a monotone class that contains finite
disjoint unions of measurable rectangles and therefore contains the Borel σ-
field. To prove the last fact, establish it first for n = 1. To handle n = 1,
repeat the same argument starting from finite disjoint unions of right-closed
left-open intevals. Use the countable additivity to verify this directly.
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Remark 3.2. Kolmogorov’s consistency theorem remains valid if we replace
R by an arbitrary complete separable metric space X, with its Borel σ-field.
However it is not valid in complete generality. See [8]. See Remark 4.7 in
this context.

The following is a strong version of the Law of Large Numbers.

Theorem 3.6. If X1, · · · , Xn · · · is a sequence of independent identically
distributed random variables with E|Xi|4 = C <∞, then

lim
n→∞

Sn
n

= lim
n→∞

X1 + · · ·+Xn

n
= E(X1)

with probability 1.

Proof. We can assume without loss of generality that E[Xi] = 0 . Just take
Yi = Xi − E[Xi]. A simple calculation shows

E[(Sn)
4] = nE[(X1)

4] + 3n(n− 1)E[(X1)
2]2 ≤ nC + 3n2σ4

and by applying a Chebychev type inequality using fourth moments,

P [|Sn
n
| ≥ δ ] = P [ |Sn| ≥ nδ ] ≤ nC + 3n2σ4

n4δ4
.

We see that ∞∑
n=1

P [ |Sn
n
| ≥ δ ] <∞

and we can now apply the Borel-Cantelli Lemma.

3.4 Series of Independent Random variables

We wish to investigate conditions under which an infinite series with inde-
pendent summands

S =

∞∑
j=1

Xj

converges with probability 1. The basic steps are the following inequalities
due to Kolomogorov and Lévy that control the behaviour of sums of inde-
pendent random variables. They both deal with the problem of estimating

Tn(ω) = sup
1≤k≤n

|Sk(ω)| = sup
1≤k≤n

|
k∑
j=1

Xj(ω)|
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where X1, · · · , Xn are n independent random variables.

Lemma 3.7. (Kolmogorov’s Inequality). Assume that EXi = 0 and
Var(Xi) = σ2

i <∞ and let s2
n =

∑n
j=1 σ

2
j . Then

P{Tn(ω) ≥ `} ≤ s2
n

`2
. (3.9)

Proof. The important point here is that the estimate depends only on s2
n and

not on the number of summands. In fact the Chebychev bound on Sn is

P{|Sn| ≥ `} ≤ s2
n

`2

and the supremum does not cost anything.

Let us define the events Ek = {|S1| < `, · · · , |Sk−1| < `, |Sk| ≥ `} and
then {Tn ≥ `} = ∪nk=1Ek is a disjoint union of Ek. If we use the independence
of Sn − Sk and SkχEk

that only depends on X1 · · · , Xk

P{Ek} ≤ 1

`2

∫
Ek

S2
k dP

≤ 1

`2

∫
Ek

[
S2
k + (Sn − Sk)2

]
dP

=
1

`2

∫
Ek

[
S2
k + 2Sk(Sn − Sk) + (Sn − Sk)2

]
dP

=
1

`2

∫
Ek

S2
n dP.

Summing over k from 1 to n

P{Tn ≥ `} ≤ 1

`2

∫
Tn≥`

S2
n dP ≤

s2
n

`2
.

eatblishing (3.9)

Lemma 3.8. (Lévy’s Inequality). Assume that

P{|Xi + · · ·+Xn| ≥ `

2
} ≤ δ

for all 1 ≤ i ≤ n. Then

P{Tn ≥ `} ≤ δ

1− δ . (3.10)
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Proof. Let Ek be as in the previous lemma.

P

{
(Tn ≥ `) ∩ |Sn| ≤ `

2

}
=

n∑
k=1

P

{
Ek ∩ |Sn| ≤ `

2

}

≤
n∑
k=1

P

{
Ek ∩ |Sn − Sk| ≥ `

2

}

=
n∑
k=1

P

{
|Sn − Sk| ≥ `

2

}
P (Ek)

≤ δ

n∑
k=1

P (Ek)

= δP{Tn ≥ `}.
On the other hand,

P

{
(Tn ≥ `) ∩ |Sn| > `

2

}
≤ P

{
|Sn| > `

2

}
≤ δ.

Adding the two,
P

{
Tn ≥ `

} ≤ δP
{
Tn ≥ `

}
+ δ

or

P
{
Tn ≥ `

} ≤ δ

1− δ
proving (3.10)

We are now ready to prove

Theorem 3.9. (Lévy’s Theorem). If X1, X2, . . . , Xn, . . . is a seqence of
independent random variables, then the following are equivalent.

(i) The distribution αn of Sn = X1 + · · ·+Xn converges weakly to a prob-
ability distribution α on R.

(ii) The random variable Sn = X1 + · · ·+Xn converges in probability to a
limit S(ω).

(iii) The random variable Sn = X1 + · · ·+ Xn converges with probability 1
to a limit S(ω).
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Proof. Clearly (iii) ⇒ (ii) ⇒ (i) are trivial. We will establish (i) ⇒ (ii) ⇒
(iii).

(i)⇒ (ii). The characteristic functions φj(t) of Xj are such that

φ(t) =
∞∏
i=1

φj(t)

is a convergent infinite product. Since the limit φ(t) is continuous at t = 0
and φ(0) = 1 it is nonzero in some interval |t| ≤ T around 0. Therefore for
|t| ≤ T ,

lim
n→∞
m→∞

n∏
m+1

φj(t) = 1.

By Exercise 3.10 below, this implies that for all t,

lim
n→∞
m→∞

n∏
m+1

φj(t) = 1

and consequently, the distribution of Sn − Sm converges to the distribution
degenerate at 0. This implies the convergence in probability to 0 of Sn− Sm
as m,n→∞. Therefore for each δ > 0,

lim
n→∞
m→∞

P{|Sn − Sm| ≥ δ} = 0

establishing (ii).

(ii)⇒ (iii). To establish (iii), because of Exercise 3.11 below, we need only
show that for every δ > 0

lim
n→∞
m→∞

P
{

sup
m<k≤n

|Sk − Sm| ≥ δ
}

= 0

and this follows from (ii) and Lévy’s inequality.

Exercise 3.10. Prove the inequality 1 − cos 2t ≤ 4(1 − cos t) for all real t.
Deduce the inequality 1 − Realφ(2t) ≤ 4[1 − Realφ(t)], valid for any char-
acteristic function. Conclude that if a sequence of characteristic functions
converges to 1 in an interval around 0, then it converges to 1 for all real t.
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Exercise 3.11. Prove that if a sequence Sn of random variables is a Cauchy
sequence in Probability, i.e. for each δ > 0,

lim
n→∞
m→∞

P{|Sn − Sm| ≥ δ} = 0

then there is a random variable S such that Sn → S in probability, i.e for
each δ > 0,

lim
n→∞

P{|Sn − S| ≥ δ} = 0.

Exercise 3.12. Prove that if a sequence Sn of random variables satisfies

lim
n→∞
m→∞

P
{

sup
m<k≤n

|Sk − Sm| ≥ δ
}

= 0

for every δ > 0 then there is a limiting random variable S(ω) such that

P

{
lim
n→∞

Sn(ω) = S(ω)

}
= 1.

Exercise 3.13. Prove that whenever Xn → X in probability the distribution
αn of Xn converges weakly to the distribution α of X.

Now it is straightforward to find sufficient conditions for the convergence
of an infinite series of independent random variables.

Theorem 3.10. (Kolmogorov’s one series Theorem). Let a sequence
{Xi} of independent random variables, each of which has finite mean and
variance, satisfy E(Xi) = 0 and

∑∞
i=1 Var(Xi) <∞, then

S(ω) =
∞∑
i=1

Xi(ω)

converges with probability 1.

Proof. By a direct application of Kolmogorov’s inequality

lim
n→∞
m→∞

P
{

sup
m<k≤n

|Sk − Sm| ≥ δ
} ≤ lim

n→∞
m→∞

1

δ2

n∑
j=m+1

E(X2
i )

= lim
n→∞
m→∞

1

δ2

n∑
j=m+1

Var(Xi) = 0.
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Therefore
lim
n→∞
m→∞

P{ sup
m<k≤n

|Sk − Sm| ≥ δ} ≤ 0.

We can also prove convergence in probability

lim
n→∞
m→∞

P{|Sn − Sm| ≥ δ} = 0

by a simple application of Chebychev’s inequality and then apply Lévy’s
Theorem to get almost sure convergence.

Theorem 3.11. (Kolomogorov’s two series theorem). Let ai = E[Xi]
be the means and σ2

i = Var(Xi) the variances of a sequence of independent
random variables {Xi}. Assume that

∑
i ai and

∑
i σ

2
i converge. Then the

series
∑

iXi converges with probability 1.

Proof. Define Yi = Xi − ai and apply the previous (one series) theorem to
Yi.

Of course in general random variables need not have finite expectations
or variances. If {Xi} is any sequence of random variables we can take a cut
off value C and define Yi = Xi if |Xi| ≤ C, and Yi = 0 otherwise. The Yi are
then independent and bounded in absolute value by C. The theorem can be
applied to Yi and if we impose the additional condition that∑

i

P{Xi 6= Yi} =
∑
i

P{|Xi| > C} <∞

by an application of Borel-Cantelli Lemma, with Probabilty 1, Xi = Yi for
all sufficiently large i. The convergence of

∑
iXi and

∑
i Yi are therefore

equivalent. We get then the sufficiency part of

Theorem 3.12. (Kolmogorov’s three series theorem). For the con-
vergence of an infinite series of independent random variables

∑
iXi it is

necessary and sufficient that all the three following infinite series converge.

(i) For some cut off value C > 0,
∑

i P{|Xi| > C} converges.

(ii) If Yi is defined to equal Xi if |Xi| ≤ C, and 0 otherwise,
∑

iE(Yi)
converges.
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(iii) With Yi as in (ii),
∑

i Var(Yi) converges.

Proof. Let us now prove the converse. If
∑

iXi converges for a sequence of
independent random variables, we must necessarily have |Xn| ≤ C eventually
with probability 1. By Borel-Cantelli Lemma the first series must converge.
This means that in order to prove the necessity we can assume without loss
of generality that |Xi| are all bounded say by 1. we may also assume that
E(Xi) = 0 for each i. Otherwise let us take independent random variables X ′

i

that have the same distribution asXi. Then
∑

iXi as well as
∑

iX
′
i converge

with probability 1 and therefore so does
∑

i(Xi−X ′
i). The random variables

Zi = Xi − X ′
i are independent and bounded by 2. They have mean 0. If

we can show
∑

Var(Zi) is convergent, since Var(Zi) = 2Var(Xi) we would
have proved the convergence of the the third series. Now it is elementary
to conclude that since both

∑
iXi as well as

∑
i(Xi − E(Xi)) converge, the

series
∑

iE(Xi) must be convergent as well. So all we need is the following
lemma to complete the proof of necessity.

Lemma 3.13. If
∑

iXi is convergent for a series of independent random
variables with mean 0 that are individually bounded by C, then

∑
i Var(Xi)

is convergent.

Proof. Let Fn = {ω : |S1| ≤ `, |S2| ≤ `, · · · , |Sn| ≤ `} where Sk = X1 + · · ·+
Xk. If the series converges with probablity 1, we must have, for some ` and
δ > 0, P (Fn) ≥ δ for all n. We have∫

Fn−1

S2
n dP =

∫
Fn−1

[Sn−1 +Xn]
2 dP

=

∫
Fn−1

[S2
n−1 + 2Sn−1Xn +X2

n] dP

=

∫
Fn−1

S2
n−1 dP + σ2

nP (Fn−1)

≥
∫
Fn−1

S2
n−1 dP + δσ2

n

and on the other hand,∫
Fn−1

S2
n dP =

∫
Fn

S2
n dP +

∫
Fn−1∩F c

n

S2
n dP

≤
∫
Fn

S2
n dP + P (Fn−1 ∩ F c

n) (`+ C)2
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providing us with the estimate

δσ2
n ≤

∫
Fn

S2
n dP −

∫
Fn−1

S2
n−1 dP + P (Fn−1 ∩ F c

n) (`+ C)2.

Since Fn−1 ∩ F c
n are disjoint and |Sn| ≤ ` on Fn ,

∞∑
j=1

σ2
j ≤

1

δ

[
`2 + (`+ C)2].

This concludes the proof.

3.5 Strong Law of Large Numbers

We saw earlier that in Theorem 3.6 that if {Xi} is sequence of i.i.d. (in-
dependent identically distributed) random variables with zero mean and a
finite fourth moment then X1+···+Xn

n
→ 0 with probability 1. We will now

prove the same result assuming only that E|Xi| <∞ and E(Xi) = 0.

Theorem 3.14. If {Xi} is a sequence of i.i.d random variables with mean
0,

lim
n→∞

X1 + · · ·+Xn

n
= 0

with probability 1.

Proof. We define

Yn =

{
Xn if |Xn| ≤ n

0 if |Xn| > n

an = P [Xn 6= Yn], bn = E[Yn] and cn = Var(Yn).

First we note that (see exercise 3.14 below)∑
n

an =
∑
n

P [|X1| > n ] ≤ E|X1| <∞

lim
n→∞

bn = 0
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and ∑
n

cn
n2
≤

∑
n

E[Y 2
n ]

n2
=

∑
n

∫
|x|≤n

x2

n2
dα

=

∫
x2

( ∑
n≥x

1

n2

)
dα ≤ C

∫
|x| dα <∞

where α is the common distribution of Xi. From the three series theorem and
the Borel-Cantelli Lemma, we conclude that

∑
n
Yn−bn
n

as well as
∑

n
Xn−bn

n

converge almost surely. It is elementary to verify that for any series
∑

n
xn

n

that converges, x1+···+xn

n
→ 0 as n→∞. We therefore conclude that

P

{
lim
n→∞

[X1 + · · ·+Xn

n
− b1 + · · ·+ bn

n

]
= 0

}
= 1

Since bn → 0 as n→∞, the theorem is proved.

Exercise 3.14. Let X be a nonnegative random variable. Then

E[X]− 1 ≤
∞∑
n=1

P [Xn ≥ n] ≤ E[X]

In particular E[X] <∞ if and only if
∑

n P [X ≥ n] <∞.

Exercise 3.15. If for a sequence of i.i.d. random variables X1, · · · , Xn, · · · ,
the strong law of large numbers holds with some limit, i.e.

P [ lim
n→∞

Sn
n

= ξ ] = 1

for some random variable ξ, which may or may not be a constant with prob-
ability 1, then show that necessarily E|Xi| < ∞. Consequently ξ = E(Xi)
with probabilty 1.

One may ask why the limit cannot be a proper random variable. There
is a general theorem that forbids it called Kolmogorov’s Zero-One law. Let
us look at the space Ω of real sequences {xn : n ≥ 1}. We have the σ-field B,
the product σ-field on Ω. In addition we have the sub σ-fields Bn generated
by {xj : j ≥ n}. Bn are ↓ with n and B∞ = ∩n Bn which is also a σ-field is
called the tail σ-field. The typical set in B∞ is a set depending only on the
tail behavior of the sequence. For example the sets {ω : xn is bounded },
{ω : lim supn xn = 1} are in B∞ whereas {ω : supn |xn| = 1} is not.
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Theorem 3.15. (Kolmogorov’s Zero-One Law). If A ∈ B∞ and P is
any product measure (not necessarily with identical components) P (A) = 0
or 1.

Proof. The proof depends on showing that A is independent of itself so that
P (A) = P (A ∩ A) = P (A)P (A) = [P (A)]2 and therefore equals 0 or 1. The
proof is elementary. Since A ∈ B∞ ⊂ Bn+1 and P is a product measure,
A is independent of Bn = σ-field generated by {xj : 1 ≤ j ≤ n}. It is
therefore independent of sets in the field F = ∪nBn. The class of sets A
that are independent of A is a monotone class. Since it contains the field
F it contains the σ-field B generated by F . In particular since A ∈ B, A is
independent of itself.

Corollary 3.16. Any random variable measurable with respect to the tail σ-
field B∞ is equal with probaility 1 to a constant relative to any given product
measure.

Proof. Left as an exercise.

Warning. For different product measures the constants can be different.

Exercise 3.16. How can that happen?

3.6 Central Limit Theorem.

We saw before that for any sequence of independent identically distributed
random variables X1, · · · , Xn, · · · the sum Sn = X1 + · · ·+Xn has the prop-
erty that

lim
n→∞

Sn
n

= 0

in probability provided the expectation exists and equals 0. If we assume
that the Variance of the random variables is finite and equals σ2 > 0, then
we have

Theorem 3.17. The distribution of Sn√
n

converges as n→∞ to the normal
distribution with density

p(x) =
1√
2πσ

exp[−x
2

σ2
]. (3.11)
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Proof. If we denote by φ(t) the characteristic function of any Xi then the
characteristic function of Sn√

n
is given by

ψn(t) = [φ(
t√
n

)]n

We can use the expansion

φ(t) = 1− σ2t2

2
+ o (t2)

to conclude that

φ(
t√
n

) = 1− σ2t2

2n
+ o (

1

n
)

and it then follows that

lim
n→∞

ψn(t) = ψ(t) = exp[−σ
2t2

2
].

Since ψ(t) is the characteristic function of the normal distribution with den-
sity p(x) given by equation (3.11), we are done.

Exercise 3.17. A more direct proof is possible in some special cases. For
instance if each Xi = ±1 with probability 1

2
, Sn can take the values n − 2k

with 0 ≤ k ≤ n,

P [Sn = 2k − n] =
1

2n

(
n

k

)
and

P [a ≤ Sn√
n
≤ b] =

1

2n

∑
k:a

√
n≤2k−n≤b√n

(
n

k

)
.

Use Stirling’s formula to prove directly that

lim
n→∞

P [a ≤ Sn√
n
≤ b] =

∫ b

a

1√
2π

exp[−x
2

2
] dx.

Actually for the proof of the central limit theorem we do not need the
random variables {Xj} to have identical distributions. Let us suppose that
they all have zero means and that the variance of Xj is σ2

j . Define s2
n =
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σ2
1 + · · ·+σ2

n. Assume s2
n →∞ as n→∞. Then Yn = Sn

sn
has zero mean and

unit variance. It is not unreasonable to expect that

lim
n→∞

P [Yn ≤ a] =

∫ a

−∞

1√
2π

exp[−x
2

2
] dx

under certain mild conditions.

Theorem 3.18. (Lindeberg’s theorem). If we denote by αi the distribu-
tion of Xi, the condition (known as Lindeberg’s condition)

lim
n→∞

1

s2
n

n∑
i=1

∫
|x|≥εsn

x2dαi = 0

for each ε > 0 is sufficient for the central limit theorem to hold.

Proof. The first step in proving this limit theorem as well as other limit
theorems that we will prove is to rewrite

Yn = Xn,1 +Xn,2 + · · ·+Xn,kn + An

where Xn,j are kn mutually independent random variables and An is a con-

stant. In our case kn = n, An = 0, and Xn,j =
Xj

sn
for 1 ≤ j ≤ n. We denote

by

φn,j(t) = E[ei tXn,j ] =

∫
ei t xdαn,j =

∫
ei t

x
sn dαj = φj(

t

sn
)

where αn,j is the distribution of Xn,j. The functions φj and φn,j are the
characteristic functions of αj and αn,j respectively. If we denote by µn the
distribution of Yn, its characteristic function µ̂n(t) is given by

µ̂n(t) =

n∏
j=1

φn,j(t)

and our goal is to show that

lim
n→∞

µ̂n(t) = exp[−t
2

2
].

This will be carried out in several steps. First, we define

ψn,j(t) = exp[φn,j(t)− 1]
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and

ψn(t) =

n∏
j=1

ψn,j(t).

We show that for each finite T ,

lim
n→∞

sup
|t|≤T

sup
1≤j≤n

|φn,j(t)− 1| = 0

and

sup
n

sup
|t|≤T

n∑
j=1

|φn,j(t)− 1| <∞.

This would imply that

lim
n→∞

sup
|t|≤T

∣∣ log µ̂n(t)− logψn(t)
∣∣

≤ lim
n→∞

sup
|t|≤T

n∑
j=1

∣∣ log φn,j(t)− [φn,j(t)− 1]
∣∣

≤ lim
n→∞

sup
|t|≤T

C
n∑
j=1

|φn,j(t)− 1|2

≤ C lim
n→∞

{
sup
|t|≤T

sup
1≤j≤n

|φn,j(t)− 1|
}{

sup
|t|≤T

n∑
j=1

|φn,j(t)− 1|
}

= 0

by the expansion

log r = log(1 + (r − 1)) = r − 1 +O(r − 1)2.

The proof can then be completed by showing

lim
n→∞

sup
|t|≤T

∣∣ logψn(t) +
t2

2

∣∣ = lim
n→∞

sup
|t|≤T

∣∣∣∣[ n∑
j=1

(φn,j(t)− 1)

]
+
t2

2

∣∣∣∣ = 0.
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We see that

sup
|t|≤T

∣∣φn,j(t)− 1
∣∣ = sup

|t|≤T

∣∣∣∣ ∫ [
exp[i t x ]− 1

]
dαn,j

∣∣∣∣
= sup

|t|≤T

∣∣∣∣ ∫ [
exp[i t

x

sn
]− 1

]
dαj

∣∣∣∣
= sup

|t|≤T

∣∣∣∣ ∫ [
exp[i t

x

sn
]− 1− i t x

sn

]
dαj

∣∣∣∣ (3.12)

≤ CT

∫
x2

s2
n

dαj (3.13)

= CT

∫
|x|<εsn

x2

s2
n

dαj + CT

∫
|x|≥εsn

x2

s2
n

dαj

≤ CT ε
2 + CT

1

s2
n

∫
|x|≥εsn

x2dαj. (3.14)

We have used the mean zero condition in deriving equation 3.12 and
the estimate |eix − 1 − ix| ≤ cx2 to get to the equation 3.13. If we let
n → ∞, by Lindeberg’s condition, the second term of equation (3.14) goes
to 0. Therefore

lim sup
n→∞

sup
1≤j≤kn

sup
|t|≤T

∣∣φn,j(t)− 1
∣∣ ≤ ε2CT .

Since, ε > 0 is arbitrary, we have

lim
n→∞

sup
1≤j≤kn

sup
|t|≤T

∣∣φn,j(t)− 1
∣∣ = 0.

Next we observe that there is a bound,

sup
|t|≤T

n∑
j=1

∣∣φn,j(t)− 1
∣∣ ≤ CT

n∑
j=1

∫
x2

s2
n

dαj ≤ CT
1

s2
n

n∑
j=1

σ2
j = CT

uniformly in n. Finally for each ε > 0,
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lim
n→∞

sup
|t|≤T

∣∣∣∣[ n∑
j=1

(φn,j(t)− 1)

]
+
t2

2

∣∣∣∣
≤ lim

n→∞
sup
|t|≤T

n∑
j=1

∣∣φn,j(t)− 1 +
σ2
j t

2

2s2
n

∣∣
= lim

n→∞
sup
|t|≤T

n∑
j=1

∣∣∣∣ ∫ [
exp[i t

x

sn
]− 1− i t

x

sn
+
t2x2

2s2
n

]
dαj

∣∣∣∣
≤ lim

n→∞
sup
|t|≤T

n∑
j=1

∣∣∣∣ ∫
|x|<εsn

[
exp[i t

x

sn
]− 1− i t

x

sn
+
t2x2

2s2
n

]
dαj

∣∣∣∣
+ lim

n→∞
sup
|t|≤T

n∑
j=1

∣∣∣∣ ∫
|x|≥εsn

[
exp[i t

x

sn
]− 1− i t

x

sn
+
t2x2

2s2
n

]
dαj

∣∣∣∣
≤ lim

n→∞
CT

n∑
j=1

∫
|x|<εsn

|x|3
s3
n

dαj

+ lim
n→∞

CT

n∑
j=1

∫
|x|≥εsn

x2

s2
n

dαj

≤ εCT lim sup
n→∞

n∑
j=1

∫
x2

s2
n

dαj

+ lim
n→∞

CT

n∑
j=1

∫
|x|≥εsn

x2

s2
n

dαj

= εCT

by Lindeberg’s condition. Since ε > 0 is arbitrary the result is proven.

Remark 3.3. The key step in the proof of the central limit theorem under
Lindeberg’s condition, as well as in other limit theorems for sums of inde-
pendent random variables, is the analysis of products

ψn(t) = Πkn
j=1φn,j(t).

The idea is to replace each φn,j(t) by exp [φn,j(t)− 1], changing the product
to the exponential of a sum. Although each φn,j(t) is close to 1, making
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the idea reasonable, in order for the idea to work one has to show that
the sum

∑kn

j=1 |φn,j(t) − 1|2 is negligible. This requires the boundedness of∑kn

j=1 |φn,j(t) − 1|. One has to use the mean 0 condition or some suitable
centering condition to cancel the first term in the expansion of φn,j(t) − 1
and control the rest from sums of the variances.

Exercise 3.18. Lyapunov’s condition is the following: for some δ > 0

lim
n→∞

1

s2+δ
n

n∑
j=1

∫
|x|2+δ dαj = 0.

Prove that Lyapunov’s condition implies Lindeberg’s condition.

Exercise 3.19. Consider the case of mutually independent random variables
{Xj}, where Xj = ±aj with probability 1

2
. What do Lyapunov’s and Linde-

berg’s conditions demand of {aj}? Can you find a sequence {aj} that does
not satisfy Lyapunov’s condition for any δ > 0 but satisfies Lindeberg’s con-
dition? Try to find a sequence {aj} such that the central limit theorem is
not valid.

3.7 Accompanying Laws.

As we stated in the previous section, we want to study the behavior of the sum
of a large number of independent random variables. We have kn independent
random variables {Xn,j : 1 ≤ j ≤ kn} with respective distributions {αn,j}.
We are interested in the distribution µn of Zn =

∑kn

j=1Xn,j. One important
assumption that we will make on the random variables {Xn,j} is that no
single one is significant. More precisely for every δ > 0,

lim
n→∞

sup
1≤j≤kn

P [ |Xn,j| ≥ δ ] = lim
n→∞

sup
1≤j≤kn

αn,j[ |x| ≥ δ ] = 0. (3.15)

The condition is referred to as uniform infinitesimality. The following
construction will play a major role. If α is a probability distribution on the
line and φ(t) is its characteristic function, for any nonnegative real number
a > 0, ψa(t) = exp[a(φ(t)− 1)] is again a characteristic distribution. In fact,
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if we denote by αk the k-fold convolution of α with itself, ψa is seen to be
the characteristic function of the probability distribution

e−a
∞∑
j=0

aj

j!
αj

which is a convex combination αj with weights e−a a
j

j!
. We use the construc-

tion mostly with a = 1. If we denote the probability distribution with charac-
teristic function ψa(t) by ea(α) one checks easily that ea+b(α) = ea(α)∗eb(α).
In particular ea(α) = e a

n
(α)n. Probability distributions β that can be written

for each n ≥ 1 as the n-fold convolution βnn of some probability distribution
βn are called infinitely divisible. In particular for every a ≥ 0 and α, ea(α)
is an infinitely divisible probability distribution. These are called compound
Poisson distributions. A special case when α = δ1 the degenerate distribu-
tion at 1, we get for ea(δ1) the usual Poisson distribution with parameter a.
We can interpret ea(α) as the distribution of the sum of a random number
of independent random variables with common distribution α. The random
n has a distribution which is Poisson with parameter a and is independent
of the random variables involved in the sum.

In order to study the distribution µn of Zn it will be more convenient
to replace αn,j by an infinitely divisible distribution βn,j. This is done as
follows. We define

an,j =

∫
|x|≤1

x dαn,j,

α′
n,j as the translate of αn,j by −an,j , i.e.

α′
n,j = αn,j ∗ δ−an,j

,

β ′
n,j = e1(αn,j),

βn,j = β ′
n,j ∗ an,j

and finally

λn =

kn∏
j=1

βn,j

A main tool in this subject is the following theorem. We assume always
that the uniform infinitesimality condition (3.15) holds. In terms of notation,
we will find it more convenient to denote by µ̂ the characteristic function of
the probability distribution µ.
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Theorem 3.19. (Accompanying Laws.) In order that, for some con-
stants An, the distribution µn ∗ δAn of Zn+An may converge to the limit µ it
is necessary and sufficient that, for the same constants An, the distribution
λn ∗ δAn converges to the same limit µ.

Proof. First we note that, for any δ > 0,

lim sup
n→∞

sup
1≤j≤kn

|an,j| = lim sup
n→∞

sup
1≤j≤kn

∣∣∣∣ ∫|x|≤1

x dαn,j

∣∣∣∣
≤ lim sup

n→∞
sup

1≤j≤kn

∣∣∣∣ ∫
|x|≤δ

x dαn,j

∣∣∣∣
+ lim sup

n→∞
sup

1≤j≤kn

∣∣∣∣ ∫
δ<|x|≤1

x dαn,j

∣∣∣∣
≤ δ + lim sup

n→∞
sup

1≤j≤kn

αn,j[ |x| ≥ δ ]

= δ.

Therefore

lim
n→∞

sup
1≤j≤kn

|an,j| = 0.

This means that α′
n,j are uniformly infinitesimal just as αn,j were. Let us

suppose that n is so large that sup1≤j≤kn
|an,j| ≤ 1

4
. The advantage in going

from αn,j to α′
n,j is that the latter are better centered and we can calculate

a′n,j =

∫
|x|≤1

x dα′
n,j

=

∫
|x−an,j |≤1

(x− an,j) dαn,j

=

∫
|x−an,j |≤1

x dαn,j − an,j αn,j[ |x− an,j| ≤ 1 ]

=

∫
|x−an,j |≤1

x dαn,j − an,j + αn,j[ |x− an,j| > 1 ]

and estimate |a′n,j| by

|a′n,j| ≤ Cαn,j[ |x| ≥ 3

4
] ≤ Cα′

n,j[ |x| ≥
1

2
].
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In other words we may assume without loss of generality that αn,j satisfy the
bound

|an,j| ≤ Cαn,j[ |x| ≥ 1

2
] (3.16)

and forget all about the change from αn,j to α′
n,j. We will drop the primes

and stay with just αn,j. Then, just as in the proof of the Lindeberg theorem,
we proceed to estimate

lim
n→∞

sup
|t|≤T

∣∣ log λ̂n(t)− log µ̂n(t)
∣∣

≤ lim
n→∞

sup
|t|≤T

∣∣ kn∑
j=1

[
log α̂n,j(t)− (α̂n,j(t)− 1)]

∣∣
≤ lim

n→∞
sup
|t|≤T

kn∑
j=1

∣∣ log α̂n,j(t)− (α̂n,j(t)− 1)
∣∣

≤ lim
n→∞

sup
|t|≤T

C
kn∑
j=1

|α̂n,j(t)− 1|2

= 0.

provided we prove that if either λn or µn has a limit after translation by some
constants An, then

sup
n

sup
|t|≤T

kn∑
j=1

∣∣α̂n,j(t)− 1
∣∣ ≤ C <∞. (3.17)

Let us first suppose that λn has a weak limit as n→∞ after translation
by An. The characteristic functions

exp
[ kn∑
j=1

(α̂n,j(t)− 1)) + itAn
]

= exp[fn(t)]

have a limit, which is again a characteristic function. Since the limiting char-
acteristic function is continuous and equals 1 at t = 0, and the convergence
is uniform near 0, on some small interval |t| ≤ T0 we have the bound

sup
n

sup
|t|≤T0

[
1− Re fn(t)

] ≤ C
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or equivalently

sup
n

sup
|t|≤T0

kn∑
j=1

∫
(1− cos t x ) dαn,j ≤ C

and from the subadditivity property (1−cos 2 t x ) ≤ 4(1−cos t x) this bound
extends to arbitrary interval |t| ≤ T ,

sup
n

sup
|t|≤T

kn∑
j=1

∫
(1− cos t x ) dαn,j ≤ CT .

If we integrate the inequality with respect to t over the interval [−T, T ] and
divide by 2T , we get

sup
n

kn∑
j=1

∫
(1− sin T x

Tx
) dαn,j ≤ CT

from which we can conclude that

sup
n

kn∑
j=1

αn,j[ |x| ≥ δ ] ≤ Cδ <∞

for every δ > 0 by choosing T = 2
δ
. Moreover using the inequality (1−cosx) ≥

c x2 valid near 0 for a suitable choice of c we get the estimate

sup
n

kn∑
j=1

∫
|x|≤1

x2 dαn,j ≤ C <∞.
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Now it is straight forward to estimate, for t ∈ [−T, T ],

|α̂n,j(t)− 1| =
∣∣∣∣ ∫ [exp(i t x )− 1] dαn,j

∣∣∣∣
=

∣∣∣∣ ∫|x|≤1

[exp(i t x )− 1] dαn,j

∣∣∣∣
+

∣∣∣∣ ∫|x|>1

[exp(i t x )− 1] dαn,j

∣∣∣∣
≤

∣∣∣∣ ∫
|x|≤1

[exp(i t x )− 1− i t x] dαn,j
∣∣∣∣

+

∣∣∣∣ ∫|x|>1

[exp(i t x )− 1] dαn,j

∣∣∣∣ + T |an,j|

≤ C1

∫
|x|≤1

x2 dαn,j + C2 αn,j [x : |x| ≥ 1

2
]

which proves the bound of equation (3.17).
Now we need to establish the same bound under the assumption that

µn has a limit after suitable translations. For any probability measure α
we define ᾱ by ᾱ(A) = α(−A) for all Borel sets. The distribution α ∗ ᾱ is
denoted by |α|2. The characteristic functions of ᾱ and |α|2 are respectively
¯̂α(t) and |α̂(t)|2 where α̂(t) is the characteristic function of α. An elementary
but important fact is |α ∗A|2 = |α|2 for any translate A. If µn has a limit so
does |µn|2. We conclude that the limit

lim
n→∞

|µ̂n(t)|2 = lim
n→∞

kn∏
j=1

|α̂n,j(t)|2

exists and defines a characteristic function which is continuous at 0 with a
value of 1. Moreover because of uniform infinitesimality,

lim
n→∞

inf
|t|≤T
|α̂n,j(t)| = 1.

It is easy to conclude that there is a T0 > 0 such that, for |t| ≤ T0,

sup
n

sup
|t|≤T0

kn∑
j=1

[1− |α̂n,j(t)|2] ≤ C0 <∞
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and by subadditivity for any finite T ,

sup
n

sup
|t|≤T

kn∑
j=1

[1− |α̂n,j(t)|2] ≤ CT <∞

providing us with the estimates

sup
n

kn∑
j=1

|αn,j|2 [ |x| ≥ δ ] ≤ Cδ <∞ (3.18)

for any δ > 0, and

sup
n

kn∑
j=1

∫ ∫
|x−y|≤2

(x− y)2dαn,j(x) dαn,j(y) ≤ C <∞. (3.19)

We now show that estimates (3.18) and (3.19) imply (3.17)

|αn,j|2[ x : |x| ≥ δ

2
] ≥

∫
|y|≤ δ

2

αn,j [x : |x− y| ≥ δ

2
] dαn,j(y)

≥ αn,j [ x : |x| ≥ δ ]αn,j [ x : |x| ≤ δ

2
]

≥ 1

2
αn,j [ x : |x| ≥ δ ]

by uniform infinitesimality. Therfore 3.18 implies that for every δ > 0,

sup
n

kn∑
j=1

αn,j [ x : |x| ≥ δ ] ≤ Cδ <∞. (3.20)

We now turn to exploiting (3.19). We start with the inequality∫ ∫
|x−y|≤2

(x− y)2dαn,j(x) dαn,j(y)

≥
{
αn,j [y : |y| ≤ 1 ]

}{
inf
|y|≤1

∫
|x|≤1

(x− y)2dαn,j(x)

}
.
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The first term on the right can be assumed to be at least 1
2

by uniform
infinitesimality. The second term∫

|x|≤1

(x− y)2dαn,j(x) ≥
∫
|x|≤1

x2dαn,j(x)− 2y

∫
|x|≤1

x dαn,j(x)

≥
∫
|x|≤1

x2dαn,j(x)− 2
∣∣ ∫

|x|≤1

x dαn,j(x)
∣∣

≥
∫
|x|≤1

x2dαn,j(x)− Cαn,j [x : |x| ≥ 1

2
].

The last step is a consequence of estimate (3.16) that we showed we could
always assume. ∫

|x|≤1

x dαn,j(x) ≤ Cαn,j [x : |x| ≥ 1

2
]

Because of estimate (3.20) we can now assert

sup
n

kn∑
j=1

∫
|x|≤1

x2 dαn,j ≤ C <∞. (3.21)

One can now derive (3.17) from (3.20) and (3.21) as in the earlier part.

Exercise 3.20. Let kn = n2 and αn,j = δ 1
n

for 1 ≤ j ≤ n2. µn = δn and show
that without centering λn ∗ δ−n converges to a different limit.

3.8 Infinitely Divisible Distributions.

In the study of limit theorems for sums of independent random variables
infinitely divisible distributions play a very important role.

Definition 3.5. A distribution µ is said to be infinitely divisible if for every
positive integer n, µ can be written as the n-fold convolution (λn∗)n of some
other probability distribution λn.

Exercise 3.21. Show that the normal distribution with density

p(x) =
1√
2π

exp[−x
2

2
]

is infinitely divisible.
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Exercise 3.22. Show that for any λ ≥ 0, the Poisson distribution with pa-
rameter λ

pλ(n) =
e−nλn

n!
for n ≥ 0

is infinitely divisible.

Exercise 3.23. Show that any probabilty distribution supported on a finite
set {x1, . . . , xk} with

µ[{xj}] = pj

and pj ≥ 0,
∑k

j=1 pj = 1 is infinitely divisible if and only if it is degenrate,
i.e. µ[{xj}] = 1 for some j.

Exercise 3.24. Show that for any nonnegative finite measure α with total
mass a, the distribution

e(F ) = e−a
∞∑
j=0

(α∗)j
j!

with characteristic function

ê(F )(t) = exp[

∫
(eitx − 1)dα]

is an infinitely divisible distribution.

Exercise 3.25. Show that the convolution of any two infinitely divisible dis-
tributions is again infinitely divisible. In particular if µ is infinitely divisible
so is any translate µ ∗ δa for any real a.

We saw in the last section that the asymptotic behavior of µn ∗ δAn can
be investigated by means of the asymptotic behavior of λn ∗ δAn and the
characteristic function λ̂n of λn has a very special form

λ̂n =
kn∏
j=1

exp[ β̂n,j(t)− 1 + i t an,j ]

= exp
[ kn∑
j=1

∫
[ ei t x − 1 ] dβn,j + i t

kn∑
j=1

an,j
]

= exp
[ ∫

[ ei t x − 1 ] dMn + i t an
]

= exp
[ ∫

[ ei t x − 1 − i t θ(x) ] dMn + i t [

∫
θ(x) dMn + an ]

]
= exp

[ ∫
[ ei t x − 1 − i t θ(x) ] dMn + i t bn

]
. (3.22)



3.8. INFINITELY DIVISIBLE DISTRIBUTIONS. 85

We can make any reasonable choice for θ(·) and we will need it to be a
bounded continuous function with

|θ(x)− x| ≤ C|x|3

near 0. Possible choices are θ(x) = x
1+x2 , or θ(x) = x for |x| ≤ 1 and sign (x)

for |x| ≥ 1. We now investigate when such things will have a weak limit.
Convoluting with δAn only changes bn to bn + An.

First we note that

µ̂(t) = exp
[ ∫

[ ei t x − 1 − i t θ(x) ] dM + i t a
]

is a characteristic function for any measureM with finite total mass. In fact it
is the characteristic function of an infinitely divisible probability distribution.
It is not necessary that M be a finite measure for µ to make sense. M could
be infinite, but in such a way that it is finite on {x : |x| ≥ δ} for every δ > 0,
and near 0 it integrates x2 i.e.,

M [x : |x| ≥ δ] <∞ for all δ > 0, (3.23)∫
|x|≤1

x2dM <∞. (3.24)

To see this we remark that

µ̂δ(t) = exp
[ ∫

|x|≥δ
[ ei t x − 1 − i t θ(x) ] dM + i t a

]
is a characteristic function for each δ > 0 and because

|ei t x − 1− i t x | ≤ CT x
2

for |t| ≤ T , µ̂δ(t)→ µ̂(t) uniformly on bounded intervals where µ̂(t) is given
by the integral

µ̂(t) = exp
[ ∫

[ ei t x − 1 − i t θ(x) ] dM + i t a
]

which converges absolutely and defines a characteristic function. Let us call
measures that satisfy (3.23) and (3.24), that can be expressed in the form
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∫
x2

1 + x2
dM <∞ (3.25)

admissible Lévy measures. Since the same argument applies to M
n

and a
n

instead of M and a, for any admissible Lévy measure M and real number a,
µ̂(t) is in fact an infinitely divisible characteristic function. As the normal
distribution is also an infinitely divisible probability distribution, we arrive
at the following

Theorem 3.20. For every admissible Lévy measure M , σ2 > 0 and real a

µ̂(t) = exp
[ ∫

[ ei t x − 1 − i t θ(x) ] dM + i t a − σ2t2

2

]
is the characteristic function of an infinitely divisible distribution µ.

We will denote this distribution µ by µ = e (M,σ2, a). The main theorem
of this section is

Theorem 3.21. In order that µn = e (Mn, σ
2
n, an) may converge to a limit

µ it is necessary and sufficient that µ = e (M,σ2, a) and the following three
conditions (3.26) (3.27) and (3.28) are satisfied.

For every bounded continuous function f that vanishes in some neighborhood
of 0,

lim
n→∞

∫
f(x)dMn =

∫
f(x)dM. (3.26)

For some ( and therefore for every) ` > 0 such that ± ` are continuity points
for M , i.e., M{± `} = 0

lim
n→∞

[
σ2
n +

∫ `

−`
x2dMn

]
=

[
σ2 +

∫ `

−`
x2dM

]
. (3.27)

an → a as n→∞. (3.28)
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Proof. Let us prove the sufficiency first. Condition (3.26) implies that for
every ` such that ± ` are continuity points of M

lim
n→∞

∫
|x|≥`

[ ei t x − 1 − i t θ(x) ] dMn =

∫
|x|≥`

[ ei t x − 1 − i t θ(x) ] dM

and because of condition (3.27), it is enough to show that

lim
`→0

lim sup
n→∞

∣∣∣∣ ∫ `

−`
[ ei t x − 1 − i t θ(x) +

t2x2

2
] dMn

−
∫ `

`

[ ei t x − 1 − i t θ(x) +
t2x2

2
] dM

∣∣∣∣
= 0

in order to conclude that

lim
n→∞

[
− σ2

nt
2

2
+

∫
[ ei t x − 1 − i t θ(x)] dMn

]
=

[
− σ2t2

2
+

∫
[ ei t x − 1 − i t θ(x)] dM

]
.

This follows from the estimates∣∣∣∣ ei t x − 1 − i t θ(x) +
t2x2

2

∣∣∣∣ ≤ CT |x|3

and ∫ `

−`
|x|3dMn ≤ `

∫ `

−`
|x|2dMn.

Condition (3.28) takes care of the terms involving an .

We now turn to proving the necessity. If µn has a weak limit µ then the
absolute values of the characteristic functions |µ̂n(t)| are all uniformly close
to 1 near 0. Since

|µ̂n(t)| = exp

[
−

∫
(1− cos t x) dMn − σ2

nt
2

2

]
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taking logarithms we conclude that

lim
t→0

sup
n

[
σnt

2

2
+

∫
(1− cos t x) dMn

]
= 0.

This implies (3.29), (3.30) and (3.31 )below.

For each ` > 0,

sup
n
Mn{x : |x| ≥ `} <∞ (3.29)

lim
A→∞

sup
n
Mn{x : |x| ≥ A} = 0. (3.30)

For every 0 ≤ ` <∞,

sup
n

[
σ2
n +

∫ `

−`
|x|2dMn

]
<∞. (3.31)

We can choose a subsequence of Mn (which we will denote by Mn as well)
that ‘converges’ in the sense that it satisfies conditions (3.26) and (3.27) of
the Theorem. Then e (Mn, σ

2
n, 0) converges weakly to e (M,σ2, 0). It is not

hard to see that for any sequence of probability distributions αn if both αn
and αn∗δan converge to limits α and β respectively, then necessarily β = α∗δa
for some a and an → a as n→ ∞. In order complete the proof of necessity
we need only establish the uniqueness of the representation, which is done in
the next lemma.

Lemma 3.22. (Uniqueness). Suppose µ = e (M1, σ
2
1 , a1) = e (M2, σ

2
2, a2),

then M1 = M2, σ
2
1 = σ2

2 and a1 = a2.

Proof. Since µ̂(t) never vanishes by taking logarithms we have

ψ(t) =

[
− σ2

1t
2

2
+

∫
[ ei t x − 1 − i t θ(x) ] dM1 + i t a1

]
=

[
− σ2

2t
2

2
+

∫
[ ei t x − 1 − i t θ(x) ] dM2 + i t a2

]
. (3.32)



3.8. INFINITELY DIVISIBLE DISTRIBUTIONS. 89

We can verify that for any admissible Lévy measure M

lim
t→∞

1

t2

∫
[ ei t x − 1 − i t θ(x) ] dM = 0.

Consequently

lim
t→∞

ψ(t)

t2
= σ2

1 = σ2
2

leaving us with

ψ(t) =

[ ∫
[ ei t x − 1 − i t θ(x) ] dM1 + i t a1

]
=

[ ∫
[ ei t x − 1 − i t θ(x) ] dM2 + i t a2

]

for a different ψ. If we calculate

H(s, t) =
ψ(t+ s) + ψ(t− s)

2
− ψ(t)

we get ∫
ei t x (1− cos s x)dM1 =

∫
ei t x (1− cos s x)dM2

for all t and s. Since we can and do assume that M{0} = 0 for any admissible
Levy measure M we have M1 = M2. If we know that σ2

1 = σ2
2 and M1 = M2

it is easy to see that a1 must equal a2.

Finally

Corollary 3.23. (Lévy-Khintchine representation ) Any infinitely di-
visible distribution admits a representation µ = e (M,σ2, a) for some admis-
sible Lévy measure M , σ2 > 0 and real number a.

Proof. We can write µ = µn∗n = µn ∗ µn ∗ · · · ∗ µn with n terms. If we show
that µn ⇒ δ0 then the sequence is uniformly infinitesimal and by the earlier
theorem on accompanying laws µ will be the limit of some λn = e (Mn, 0, an)
and therefore has to be of the form e (M,σ2, a) for some choice of admissible
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Levy measure M , σ2 > 0 and real a. In a neighborhood around 0, µ̂(t) is
close to 1 and it is easy to check that

µ̂n(t) = [µ̂(t)]
1
n → 1

as n→∞ in that neighborhood. As we saw before this implies that µn ⇒ δ0.

Applications.

1. Convergence to the Poisson Distribution. Let {Xn,j : 1 ≤ j ≤ kn} be
kn independent random variables taking the values 0 or 1 with proba-
bilities 1− pn,j and pn,j respectively. We assume that

lim
n→∞

sup
1≤j≤kn

pn,j = 0

which is the uniform infinitesimality condition. We are interested in
the limiting distribution of Sn =

∑kn

j=1Xn,j as n→ ∞. Since we have

to center by the mean we can pick any level say 1
2

for truncation. Then
the truncated means are all 0. The accompanying laws are given by
e (Mn, 0, an) with Mn = (

∑
pn,j)δ1 and an = (

∑
pn,j) θ(1). It is clear

that a limit exists if and only if λn =
∑
pn,j has a limit λ as n → ∞

and the limit in such a case is the Poisson distribution with parameter
λ.

2. Convergence to the normal distribution. If the limit of Sn =
∑kn

j=1Xn,j

of kn uniformly infinitesimal mutually independent random variables
exists, then the limit is Normal if and only if M ≡ 0. If an,j is the
centering needed, this is equivalent to

lim
n→∞

∑
j

P [|Xn,j − an,j| ≥ ε] = 0

for all ε > 0. Since limn→∞ supj |an,j| = 0, this is equivalent to

lim
n→∞

∑
j

P [|Xn,j| ≥ ε] = 0

for each ε > 0.
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3. The limiting variance and the mean are given by

σ2 = lim
n→∞

∑
j

E

{
[Xn,j − an,j]2 : |Xn,j − an,j| ≤ 1

}
and

a = lim
n→∞

∑
j

an,j

where

an,j =

∫
|x|≤1

x dαn,j

Suppose that E[Xn,j] = 0 for all 1 ≤ j ≤ kn and n. Assume that
σ2
n =

∑
j E{[Xn,j]

2} and σ2 = limn→∞ σ2
n exists. What do we need in

order to make sure that the limiting distribution is normal with mean
0 and variance σ2? Let αn,j be the distribution of Xn,j.

|an,j|2 =

∣∣∣∣ ∫
|x|≤1

x dαn,j

∣∣∣∣2 =

∣∣∣∣ ∫
|x|>1

x dαn,j

∣∣∣∣2 ≤ αn,j[ |x| > 1 ]

∫
|x|2 dαn,j

and

kn∑
j=1

|an,j|2 ≤
{ ∑

1≤j≤kn

∫
|x|2 dαn,j

}{
sup

1≤j≤kn

αn,j[ |x| > 1 ]

}
≤ σ2

n

{
sup

1≤j≤kn

αn,j[ |x| > 1 ]

}
→ 0.

Because
∑kn

j=1 |an,j|2 → 0 as n→∞ we must have

σ2 = lim
n→∞

∑ ∫
|x|≤`
|x|2 dαn,j

for every ` > 0 or equivalently

lim
n→∞

∑ ∫
|x|>`
|x|2 dαn,j = 0
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for every ` establishing the necessity as well as sufficiency in Lindeberg’s
Theorem. A simple calculation shows that∑

j

|an,j| ≤
∑
j

∫
|x|>1

|x| dαn,j ≤
∑
j

∫
|x|>1

|x|2 dαn,j = 0

establishing that the limiting Normal distribution has mean 0.

Exercise 3.26. What happens in the Poisson limit theorem (application 1) if
λn =

∑
j pn,j →∞ as n→∞? Can you show that the distribution of Sn−λn√

λn

converges to the standard Normal distribution?

3.9 Laws of the iterated logarithm.

When we are dealing with a sequence of independent identically distributed
random variables X1, · · · , Xn, · · · with mean 0 and variance 1, we have a
strong law of large numbers asserting that

P

{
lim
n→∞

X1 + · · ·+Xn

n
= 0

}
= 1

and a central limit theorem asserting that

P

{
X1 + · · ·+Xn√

n
≤ a

}
→

∫ a

−∞

1√
2π

exp[−x
2

2
] dx

It is a reasonable question to ask if the random variables X1+···+Xn√
n

themselves
converge to some limiting random variable Y that is distributed according
to the the standard normal distribution. The answer is no and is not hard
to show.

Lemma 3.24. For any sequence nj of numbers →∞,

P

{
lim sup
j→∞

X1 + · · ·+Xnj

√
nj = +∞

}
= 1

Proof. Let us define

Z = lim sup
j→∞

X1 + · · ·+Xnj

√
nj
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which can be +∞. Because the normal distribution has an infinitely long
tail, i.e the probability of exceeding any given value is positive, we must have

P
[
Z ≥ a

]
> 0

for any a. But Z is a random variable that does not depend on the par-
ticular values of X1, · · · , Xn and is therefore a set in the tail σ-field. By
Kolmogorov’s zero-one law P

[
Z ≥ a

]
must be either 0 or 1. Since it cannot

be 0 it must be 1.

Since we know that X1+···+Xn

n
→ 0 with probability 1 as n → ∞, the

question arises as to the rate at which this happens. The law of the iterated
logarithm provides an answer.

Theorem 3.25. For any sequence X1, · · · , Xn, · · · of independent identi-
cally distributed random variables with mean 0 and Variance 1,

P

{
lim sup
n→∞

X1 + · · ·+Xn√
n log log n

=
√

2

}
= 1.

We will not prove this theorem in the most general case which assumes
only the existence of two moments. We will assume instead that E[|X|2+α] <
∞ for some α > 0. We shall first reduce the proof to an estimate on the
tail behavior of the distributions of Sn√

n
by a careful application of the Borel-

Cantelli Lemma. This estimate is obvious if X1, · · · , Xn, · · · are themselves
normally distributed and we will show how to extend it to a large class of
distributions that satisfy the additional moment condition. It is clear that
we are interested in showing that for λ >

√
2,

P

{
Sn ≥ λ

√
n log logn infinitely often

}
= 0.

It would be sufficient because of Borel-Cantelli lemma to show that for any
λ >
√

2, ∑
n

P

{
Sn ≥ λ

√
n log log n

}
<∞.

This however is too strong. The condition of the Borel-Cantelli lemma is
not necessary in this context because of the strong dependence between the
partial sums Sn. The function φ(n) =

√
n log logn is clearly well defined and



94 CHAPTER 3. INDEPENDENT SUMS

non-decreasing for n ≥ 3 and it is sufficient for our purposes to show that
for any λ >

√
2 we can find some sequence kn ↑ ∞ of integers such that∑

n

P

{
sup

kn−1≤j≤kn

Sj ≥ λφ(kn−1)

}
<∞. (3.33)

This will establish that with probability 1,

lim sup
n→∞

supkn−1≤j≤kn
Sj

φ(kn−1)
≤ λ

or by the monotonicity of φ,

lim sup
n→∞

Sn
φ(n)

≤ λ

with probability 1. Since λ >
√

2 is arbitrary the upper bound in the law
of the iterated logarithm will follow. Each term in the sum of 3.33 can be
estimated as in Levy’s inequality,

P

{
sup

kn−1≤j≤kn

Sj ≥ λφ(kn−1)

}
≤ 2P

{
Skn ≥ (λ− σ)φ(kn−1)

}
with 0 < σ < λ, provided

sup
1≤j≤kn−kn−1

P

{
|Sj| ≥ σφ(kn−1)

}
≤ 1

2
.

Our choice of kn will be kn = [ρn] for some ρ > 1 and therefore

lim
n→∞

φ(kn−1)√
kn

=∞

and by Chebychev’s inequality, for any fixed σ > 0,

sup
1≤j≤kn

P

{
|Sj| ≥ σφ(kn−1)

}
≤ E[S2

n]

[σφ(kn−1)]2

=
kn

[σφ(kn−1)]2

=
kn

σ2kn−1 log log kn−1

= o(1) as n→∞. (3.34)
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By choosing σ small enough so that λ − σ > √2 it is sufficient to show
that for any λ′ >

√
2, ∑

n

P

{
Skn ≥ λ′ φ(kn−1)

}
<∞.

By picking ρ sufficiently close to 1, ( so that λ′
√
ρ >
√

2), because φ(kn−1)
φ(kn)

=
1√
ρ

we can reduce this to the convergence of

∑
n

P

{
Skn ≥ λφ(kn)

}
<∞ (3.35)

for all λ >
√

2.
If we use the estimate P [X ≥ a] ≤ exp[−a2

2
] that is valid for the standard

normal distribution, we can verify 3.35.∑
n

exp
[− λ2(φ(kn))

2

2 kn

]
<∞

for any λ >
√

2.
To prove the lower bound we select again a subsequece, kn = [ρn] with

some ρ > 1, and look at Yn = Skn+1 − Skn, which are now independent
random variables. The tail probability of the Normal distribution has the
lower bound

P [X ≥ a] =
1√
2π

∫ ∞

a

exp[−x
2

2
]dx

≥ 1√
2π

∫ ∞

a

exp[−x
2

2
− x](x+ 1)dx

≥ 1√
2π

exp[−(a + 1)2

2
].

If we assume Normal like tail probabilities we can conclude that∑
n

P

{
Yn ≥ λφ(kn+1)

}
≥

∑
n

exp
[− 1

2
[1 +

λφ(kn+1)√
(ρn+1 − ρn) ]

2
]

= +∞

provided λ2ρ
2(ρ−1)

< 1 and conclude by the Borel-Cantelli lemma, that Yn =

Skn+1 − Skn exceeds λφ(kn+1) infinitely often for such λ. On the other hand
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from the upper bound we already have (replacing Xi by −Xi)

P

{
lim sup

n

−Skn

φ(kn+1)
≤
√

2√
ρ

}
= 1.

Consequently

P

{
lim sup

n

Skn+1

φ(kn+1)
≥

√
2(ρ− 1)

ρ
−
√

2√
ρ

}
= 1

and therefore,

P

{
lim sup

n

Sn
φ(n)

≥
√

2(ρ− 1)

ρ
−
√

2√
ρ

}
= 1.

We now take ρ arbitrarily large and we are done.
We saw that the law of the iterated logarithm depends on two things.

(i). For any a > 0 and p < a2

2
an upper bound for the probability

P [Sn ≥ a
√
n log logn] ≤ Cp[logn]−p

with some constant Cp
(ii). For any a > 0 and p > a2

2
a lower bound for the probability

P [Sn ≥ a
√
n log logn] ≥ Cp[logn]−p

with some, possibly different, constant Cp.

Both inequalities can be obtained from a uniform rate of convergence in
the central limit theorem.

sup
a

∣∣∣∣P{ Sn√n ≥ a} −
∫ ∞

a

1√
2π

exp[−x
2

2
] dx

∣∣∣∣ ≤ Cn−δ (3.36)

for some δ > 0 in the central limit theorem. Such an error estimate is
provided in the following theorem

Theorem 3.26. (Berry-Esseen theorem). Assume that the i.i.d. se-
quence {Xj} with mean zero and variance one satisfies an additional moment
condition E|X|2+α < ∞ for some α > 0. Then for some δ > 0 the estimate
(3.36) holds.
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Proof. The proof will be carried out after two lemmas.

Lemma 3.27. Let −∞ < a < b < ∞ be given and 0 < h < b−a
2

be a small
positive number. Consider the function fa,b,h(x) defined as

fa,b,h(x) =



0 for −∞ < x ≤ a− h
x−a+h

2h
for a− h ≤ x ≤ a+ h

1 for a+ h ≤ x ≤ b− h
1− x−b+h

2h
for b− h ≤ x ≤ b+ h

0 for b+ h ≤ x <∞.
For any probability distribution µ with characteristic function µ̂(t)∫ ∞

−∞
fa,b,h(x) dµ(x) =

1

2π

∫ ∞

−∞
µ̂(y)

e−i a y − e−i b y
i y

sin h y

h y
dy.

Proof. This is essentially the Fourier inversion formula. Note that

fa,b,h(x) =
1

2π

∫ ∞

−∞
ei x y

e−i a y − e−i b y
i y

sinh y

h y
dy.

We can start with the double integral

1

2π

∫ ∞

−∞

∫ ∞

−∞
ei x y

e−i a y − e−i b y
i y

sin h y

h y
dy dµ(x)

and apply Fubini’s theorem to obtain the lemma.

Lemma 3.28. If λ, µ are two probability measures with zero mean having
λ̂(·), µ̂(·) for respective characteristic functions. Then∫ ∞

−∞
fa,h(x) d(λ− µ)(x) =

1

2π

∫ ∞

−∞
[λ̂(y)− µ̂(y)]

e−i a y

i y

sin h y

h y
dy

where fa,h(x) = fa,∞,h(x), is given by

fa,h(x) =


0 for −∞ < x ≤ a− h
x−a+h

2h
for a− h ≤ x ≤ a + h

1 for a + h ≤ x <∞.
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Proof. We just let b→∞ in the previous lemma. Since |λ̂(y)−µ̂(y)| = o(|y|),
there is no problem in applying the Riemann-Lebesgue Lemma. We now

proceed with the proof of the theorem.

λ[[a,∞)] ≤
∫
fa−h,h(x) dλ(x) ≤ λ[[a− 2h,∞)]

and

µ[[a,∞)] ≤
∫
fa−h,h(x) dµ(x) ≤ µ[[a− 2h,∞)].

Therefore if we assume that µ has a density bounded by C,

λ[[a,∞)]− µ[[a,∞)] ≤ 2hC +

∫
fa−h,h(x) d(λ− µ)(x).

Since we get a similar bound in the other direction as well,

sup
a
|λ[[a,∞)]− µ[[a,∞)]| ≤ sup

a

∣∣ ∫ fa−h,h(x) d(λ− µ)(x)
∣∣

+ 2hC

≤ 1

2π

∫ ∞

−∞
|λ̂(y)− µ̂(y)| | sinh y |

h y2
dy

+ 2hC. (3.37)

Now we return to the proof of the theorem. We take λ to be the distribu-
tion of Sn√

n
having as its characteristic function λ̂n(y) = [φ( y√

n
)]n where φ(y)

is the characteristic function of the common distribution of the {Xi} and has
the expansion

φ(y) = 1− y2

2
+O(|y|2+α)

for some α > 0. We therefore get, for some choice of α > 0,

|λ̂n(y)− exp[−y
2

2
]| ≤ C

|y|2+α
nα

if |y| ≤ n
α

2+α .
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Therefore for θ = α
2+α∫ ∞

−∞

∣∣λ̂n(y) − exp[−y
2

2
]
∣∣ | sinh y |

h y2
dy

=

∫
|y|≤nθ

∣∣λ̂n(y)− exp[−y
2

]
∣∣ | sinh y |

h y2
dy

+

∫
|y|≥nθ

∣∣λ̂n(y)− exp[−y
2

]
∣∣ | sinh y |

h y2
dy

≤ C

h

{∫
|y|≤nθ

|y|α
nα

dy +

∫
|y|≥nθ

dy

|y|2
}

≤ C
n(α+1)θ−α + n−θ

h

=
C

hn
α

α+2

Substituting this bound in 3.37 we get

sup
a
|λn[[a,∞)]− µ[[a,∞)]| ≤ C1 h+

C

hn
α

2+α

.

By picking h = n− α
2(2+α) we get

sup
a
|λn[[a,∞)]− µ[[a,∞)]| ≤ C n− α

2(2+α)

and we are done.
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