
Chapter 11

Uniqueness: 1d

We will consider a one dimensional diffusion with b(t, x) = 0 and 0 < c ≤
a(t, x) ≤ C < ∞. We want to prove that for any (s, x) there exists a unique
process Ps,x such that Ps,x ∈ I(a, 0). It would then follow from Girsanov’s
theorem that the same is true for [a, b] as well provided b(s, x) is bounded.
Since a(s, x) need not be continuous we have to show existence as well. The
proof depends on an estimate. Let us assume that a(s, x) is Lipschitz in x.
Then σ(s, x) is Lipschitz as well and we do have a unique family {Ps,x}. We
will approximate a(s, x) by an(s, x) and assume that 0 < c ≤ an(s, x) ≤ C and
an(s, x) → a(s, x) for almost all (s, x) w.r.t. Lebesgue measure on R2. We verify
the following:

1. The family Pn
s,x that corresponds to an(s, x) is uniformly tight. This comes

easily from Kolmogorov’s theorem because

EP N
s,x [|x(t) − x(s)|4] ≤ C|t − s|2

with a constant C independent of n.

Fix s0, x0. Let a subsequence of Pn
s0,x0

converge weakly to P . Then it easy to
verify that P [x(s0) = x0] = 1. But it is not obvious why

f(x(t)) − f(x0) −
1

2

∫ t

s0

a(s, x(s))f ′′(x(s))ds

is a martingale. We need to show that if gnis uniformly bounded and gn(s, x) →
g(s, x) a.e. Lebesgue on R2, then

lim
n→∞

EP n
s0,x0 [

∫ t

s0

H(x(·))gn(s, x(s))ds] = EP [

∫ t

s0

H(x(·))g(s, x(s))ds]

Where H is a bounded continuous function on C[s0, T ]. In such a case we can
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take the limits on both sides of

EP n
s0,x0

[
H(ω)[f(x(t2)) − f(x0) −

1

2

∫ t2

s0

an(s, x(s))f ′′(x(s))ds]
]

= EP n
s0,x0

[
H(ω)[f(x(t2)) − f(x0) −

1

2

∫ t1

s0

an(s, x(s))f ′′(x(s))ds]
]

to get

EP
[
H(ω)[f(x(t2)) − f(x0) −

1

2

∫ t2

s0

a(s, x(s))f ′′(x(s))ds]
]

= EP
[
H(ω)[f(x(t2)) − f(x0) −

1

2

∫ t1

s0

a(s, x(s))f ′′(x(s))ds]
]

for every bounded continuous Ft1 measurable function. If we define the linear
functional

Λn(g) = EP n
s0,x0 [H(ω)

∫ T

s0

g(s, x(s))ds]

and establish a uniform bound of the form

|Λn(g)| ≤ C(T )‖g‖2 (11.1)

that will be sufficient. If we represent

Λn(g) =

∫

[s0,T ]×R

g(t, x)λn(dt, dx)

from the weak convergence of the processes Pn
s0,x0

we can conclude that the
contribution to Λn(g) comes mainly from a compact set [s0, T ]× [−A, A]. From
the estimate (9.1) it follows that λn(dt, dx) = λn(t, x)dtdx and there is a uni-
form bound

∫
|λn(t, x)|2dtdx ≤ C. In particular we can assume that λn(t, x)

converges weakly in L2[[s0, T ]×R to a limit λ(t, x) and of course from the weak
convergence of Pn

s0,x0
to P , assuming H(ω) to be bounded and continuous, it

follows that

∫

[s0,T ]×R

g(t, x)λ(t, x)dtdx = EP [H(ω)

∫ T

s0

g(s, x(s))ds]

If gn are uniformly bounded and converge to g for almost all (t, x), then gn → g

in L2[[s0, T ]× [−A, A]] and with the weak convergence of λn → λ it follows that

lim
n→∞

∫

[s0,T ]×[−A,A]

gn(t, x)λn(t, x)dtdx =

∫

[s0,T ]×[−A,A]

g(t, x)λ(t, x)dtdx

and the contribution to the integral from [s0, T ] × [−A, A]c is uniformly small.
We need the following result from PDE.
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Theorem 11.1. Consider [s0, T ] × R and functions u(t, x) that are C∞ and

have compact support in [s0, T )× R. Let A be the operator

(Au)(t, x) = ut +
1

2
a(t, x)uxx(t, x)

with 0 < c ≤ a(t, x) ≤ C < ∞. Then the range of A is dense in L2[[s0, T ] ×
R] and A is invertible with a bounded inverse u = Gf , that is bounded and

continuous on [s0, T ]× R, u(T, x) ≡ 0 and satisfies

sup
t∈[s0,T ]

x∈R

|u(t, x)| ≤ C1[‖ut‖2 + ‖uxx‖2] ≤ C2‖f‖2

with C1, C2 depending only on c and C.

Proof. We consider the operator

u(s, x) = (G0f)(s, x) =

∫ T

s

∫

R

1√
2π(t − s)C

e
− (y−x)2

2C(t−s) f(y, t)dtdy

It is easy to check that u satisfies u(T, x) ≡ 0 and

us +
C

2
uxx = −f

Moreover
|u(s, x)| ≤ K‖f‖2

where

K2 =

∫ T

s

1

2πC(t − s)
e
− (y−x)2

C(t−s) dydt = k
√

C(T − s)

We can solve explicitly by using Fourier transforms

û(τ, ξ) =
f̂

1
2Cξ2 − iτ

and estimate

‖ûxx‖2 = sup
τ,ξ

∣∣ ξ2

1
2Cξ2 − iτ

∣∣‖f̂‖2 ≤
2

C
‖f̂‖2

If we treat the operator

A = us +
1

2
a(s, x)uxx

as a perturbation

Au = A0u + Eu = us +
C

2
uxx + Eu

then

‖Eu‖2 ≤
C − c

2
‖uxx‖2 ≤

C − c

C
‖A0u‖2 = ρ‖A0u‖2

where ρ < 1. The operator A can be inverted as

(A0 + E)−1 = A−1
0 (I + EA−1

0 )−1 = A−1
0 B

Since ‖EA−1
0 ‖L2→L2 ≤ ρ < 1, B is a bounded operator from L2 → L2.
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The next theorem guarantees that any solution P corresponding to any a

with 0 < c ≤ a(t, x) ≤ C < ∞ satisfies the bound

|EP [

∫ T

s

f(s, x(s))ds]| ≤ CT−s‖f‖2

with a constant CT−s depending only on c, C and T − s.

Theorem 11.2. Let x(t) = x +
∫ t

0
σ(s, ω)dβ(s) be a stochastic integral with

0 < c ≤ σ2(s, ω) ≤ C < ∞. Then

|E[

∫ T

0

f(s, x(s))ds]| ≤ CT ‖f‖2

Proof. If we prove it for simple σ then since the estimate is uniform, we can ap-
proximate the given σ by simple σn. Since simple ones are essentially piecewise
constant and the estimate is true for Brownian motion, it is easy to verify that
with

xn(t) = x +

∫ t

0

σn(s, ω)dβ(s)

we do have

|EP [

∫ T

0

f(s, xn(s))ds]| ≤ Cn‖f‖2

for some finite Cn. It remains to bound Cn independent of n.

If we take as before u = G0f and apply Itô’s formula

u(s, x) = EP

[ ∫ T

s

[us(s, xn(s)) +
1

2
an(s, ω)uxx(s, xn(s))]ds

]

= EP
[ ∫ T

s

f(s, xn(s)) +
1

2
[an(s, ω) − C]uxx(s, xn(s))ds

]

We can conclude that

|EP
[ ∫ T

s

f(s, xn(s))ds
]
| ≤ |u(s, x)| +

C − c

2
EP

[ ∫ T

s

|uxx(s, xn(s))|ds
]

If we use the bound ‖uxx‖2 ≤ 2
C
‖f‖2, denoting by Cn the supremum

Cn = sup
‖f‖≤1

EP
[ ∫ T

s

f(s, xn(s))ds
]
|

we obtain

Cn ≤ CT +
C − c

2

2

C
Cn = CT + ρCn

Since Cn < ∞ we have Cn ≤ CT

1−ρ
.

Remark 11.1. If d = 1 for any [a, b] with 0 < c ≤ a(s, x) ≤ C < ∞ and |b| ≤ C

there is a unique P = Ps,x ∈ I(s, x, a, b). It is then a strong Markov process.


