Chapter 11

Uniqueness: 1d

We will consider a one dimensional diffusion with $b(t, x)=0$ and $0<c \leq$ $a(t, x) \leq C<\infty$. We want to prove that for any (s, x) there exists a unique process $P_{s, x}$ such that $P_{s, x} \in \mathcal{I}(a, 0)$. It would then follow from Girsanov's theorem that the same is true for $[a, b]$ as well provided $b(s, x)$ is bounded. Since $a(s, x)$ need not be continuous we have to show existence as well. The proof depends on an estimate. Let us assume that $a(s, x)$ is Lipschitz in x. Then $\sigma(s, x)$ is Lipschitz as well and we do have a unique family $\left\{P_{s, x}\right\}$. We will approximate $a(s, x)$ by $a_{n}(s, x)$ and assume that $0<c \leq a_{n}(s, x) \leq C$ and $\left.a_{n}(s, x) \rightarrow a_{(} s, x\right)$ for almost all (s, x) w.r.t. Lebesgue measure on R^{2}. We verify the following:

1. The family $P_{s, x}^{n}$ that corresponds to $a_{n}(s, x)$ is uniformly tight. This comes easily from Kolmogorov's theorem because

$$
E^{P_{s, x}^{N}}\left[|x(t)-x(s)|^{4}\right] \leq C|t-s|^{2}
$$

with a constant C independent of n.
Fix s_{0}, x_{0}. Let a subsequence of $P_{s_{0}, x_{0}}^{n}$ converge weakly to P. Then it easy to verify that $P\left[x\left(s_{0}\right)=x_{0}\right]=1$. But it is not obvious why

$$
f(x(t))-f\left(x_{0}\right)-\frac{1}{2} \int_{s_{0}}^{t} a(s, x(s)) f^{\prime \prime}(x(s)) d s
$$

is a martingale. We need to show that if g_{n} is uniformly bounded and $g_{n}(s, x) \rightarrow$ $g(s, x)$ a.e. Lebesgue on R^{2}, then

$$
\lim _{n \rightarrow \infty} E^{P_{s_{0}, x_{0}}^{n}}\left[\int_{s_{0}}^{t} H(x(\cdot)) g_{n}(s, x(s)) d s\right]=E^{P}\left[\int_{s_{0}}^{t} H(x(\cdot)) g(s, x(s)) d s\right]
$$

Where H is a bounded continuous function on $C\left[s_{0}, T\right]$. In such a case we can
take the limits on both sides of

$$
\begin{aligned}
E^{P_{s_{0}, x_{0}}^{n}} & {\left[H(\omega)\left[f\left(x\left(t_{2}\right)\right)-f\left(x_{0}\right)-\frac{1}{2} \int_{s_{0}}^{t_{2}} a_{n}(s, x(s)) f^{\prime \prime}(x(s)) d s\right]\right] } \\
& =E^{P_{s_{0}, x_{0}}^{n}}\left[H(\omega)\left[f\left(x\left(t_{2}\right)\right)-f\left(x_{0}\right)-\frac{1}{2} \int_{s_{0}}^{t_{1}} a_{n}(s, x(s)) f^{\prime \prime}(x(s)) d s\right]\right]
\end{aligned}
$$

to get

$$
\begin{aligned}
E^{P}[H(\omega) & {\left.\left[f\left(x\left(t_{2}\right)\right)-f\left(x_{0}\right)-\frac{1}{2} \int_{s_{0}}^{t_{2}} a(s, x(s)) f^{\prime \prime}(x(s)) d s\right]\right] } \\
& =E^{P}\left[H(\omega)\left[f\left(x\left(t_{2}\right)\right)-f\left(x_{0}\right)-\frac{1}{2} \int_{s_{0}}^{t_{1}} a(s, x(s)) f^{\prime \prime}(x(s)) d s\right]\right]
\end{aligned}
$$

for every bounded continuous $\mathcal{F}_{t_{1}}$ measurable function. If we define the linear functional

$$
\Lambda_{n}(g)=E^{P_{s_{0}, x_{0}}^{n}}\left[H(\omega) \int_{s_{0}}^{T} g(s, x(s)) d s\right]
$$

and establish a uniform bound of the form

$$
\begin{equation*}
\left|\Lambda_{n}(g)\right| \leq C(T)\|g\|_{2} \tag{11.1}
\end{equation*}
$$

that will be sufficient. If we represent

$$
\Lambda_{n}(g)=\int_{\left[s_{0}, T\right] \times R} g(t, x) \lambda_{n}(d t, d x)
$$

from the weak convergence of the processes $P_{s_{0}, x_{0}}^{n}$ we can conclude that the contribution to $\Lambda_{n}(g)$ comes mainly from a compact set $\left[s_{0}, T\right] \times[-A, A]$. From the estimate (9.1) it follows that $\lambda_{n}(d t, d x)=\lambda_{n}(t, x) d t d x$ and there is a uniform bound $\int\left|\lambda_{n}(t, x)\right|^{2} d t d x \leq C$. In particular we can assume that $\lambda_{n}(t, x)$ converges weakly in $L_{2}\left[\left[s_{0}, T\right] \times R\right.$ to a limit $\lambda(t, x)$ and of course from the weak convergence of $P_{s_{0}, x_{0}}^{n}$ to P, assuming $H(\omega)$ to be bounded and continuous, it follows that

$$
\int_{\left[s_{0}, T\right] \times R} g(t, x) \lambda(t, x) d t d x=E^{P}\left[H(\omega) \int_{s_{0}}^{T} g(s, x(s)) d s\right]
$$

If g_{n} are uniformly bounded and converge to g for almost all (t, x), then $g_{n} \rightarrow g$ in $L_{2}\left[\left[s_{0}, T\right] \times[-A, A]\right]$ and with the weak convergence of $\lambda_{n} \rightarrow \lambda$ it follows that

$$
\lim _{n \rightarrow \infty} \int_{\left[s_{0}, T\right] \times[-A, A]} g_{n}(t, x) \lambda_{n}(t, x) d t d x=\int_{\left[s_{0}, T\right] \times[-A, A]} g(t, x) \lambda(t, x) d t d x
$$

and the contribution to the integral from $\left[s_{0}, T\right] \times[-A, A]^{c}$ is uniformly small. We need the following result from PDE.

Theorem 11.1. Consider $\left[s_{0}, T\right] \times R$ and functions $u(t, x)$ that are C^{∞} and have compact support in $\left[s_{0}, T\right) \times R$. Let \mathcal{A} be the operator

$$
(\mathcal{A} u)(t, x)=u_{t}+\frac{1}{2} a(t, x) u_{x x}(t, x)
$$

with $0<c \leq a(t, x) \leq C<\infty$. Then the range of \mathcal{A} is dense in $L_{2}\left[\left[s_{0}, T\right] \times\right.$ R] and \mathcal{A} is invertible with a bounded inverse $u=G f$, that is bounded and continuous on $\left[s_{0}, T\right] \times R, u(T, x) \equiv 0$ and satisfies

$$
\sup _{\substack{t \in\left[s_{0}, T\right] \\ x \in R}}|u(t, x)| \leq C_{1}\left[\left\|u_{t}\right\|_{2}+\left\|u_{x x}\right\|_{2}\right] \leq C_{2}\|f\|_{2}
$$

with C_{1}, C_{2} depending only on c and C.
Proof. We consider the operator

$$
u(s, x)=\left(G_{0} f\right)(s, x)=\int_{s}^{T} \int_{R} \frac{1}{\sqrt{2 \pi(t-s) C}} e^{-\frac{(y-x)^{2}}{2 C(t-s)}} f(y, t) d t d y
$$

It is easy to check that u satisfies $u(T, x) \equiv 0$ and

$$
u_{s}+\frac{C}{2} u_{x x}=-f
$$

Moreover

$$
|u(s, x)| \leq K\|f\|_{2}
$$

where

$$
K^{2}=\int_{s}^{T} \frac{1}{2 \pi C(t-s)} e^{-\frac{(y-x)^{2}}{C(t-s)}} d y d t=k \sqrt{C(T-s)}
$$

We can solve explicitly by using Fourier transforms

$$
\hat{u}(\tau, \xi)=\frac{\hat{f}}{\frac{1}{2} C \xi^{2}-i \tau}
$$

and estimate

$$
\left\|\widehat{u_{x x}}\right\|_{2}=\sup _{\tau, \xi}\left|\frac{\xi^{2}}{\frac{1}{2} C \xi^{2}-i \tau}\right|\|\hat{f}\|_{2} \leq \frac{2}{C}\|\hat{f}\|_{2}
$$

If we treat the operator

$$
\mathcal{A}=u_{s}+\frac{1}{2} a(s, x) u_{x x}
$$

as a perturbation

$$
\mathcal{A} u=\mathcal{A}_{0} u+E u=u_{s}+\frac{C}{2} u_{x x}+E u
$$

then

$$
\|E u\|_{2} \leq \frac{C-c}{2}\left\|u_{x x}\right\|_{2} \leq \frac{C-c}{C}\left\|\mathcal{A}_{0} u\right\|_{2}=\rho\left\|\mathcal{A}_{0} u\right\|_{2}
$$

where $\rho<1$. The operator \mathcal{A} can be inverted as

$$
\left(\mathcal{A}_{0}+E\right)^{-1}=\mathcal{A}_{0}^{-1}\left(I+E \mathcal{A}_{0}^{-1}\right)^{-1}=\mathcal{A}_{0}^{-1} B
$$

Since $\left\|E \mathcal{A}_{0}^{-1}\right\|_{L_{2} \rightarrow L_{2}} \leq \rho<1, B$ is a bounded operator from $L_{2} \rightarrow L_{2}$.

The next theorem guarantees that any solution P corresponding to any a with $0<c \leq a(t, x) \leq C<\infty$ satisfies the bound

$$
\left|E^{P}\left[\int_{s}^{T} f(s, x(s)) d s\right]\right| \leq C_{T-s}\|f\|_{2}
$$

with a constant C_{T-s} depending only on c, C and $T-s$.
Theorem 11.2. Let $x(t)=x+\int_{0}^{t} \sigma(s, \omega) d \beta(s)$ be a stochastic integral with $0<c \leq \sigma^{2}(s, \omega) \leq C<\infty$. Then

$$
\left|E\left[\int_{0}^{T} f(s, x(s)) d s\right]\right| \leq C_{T}\|f\|_{2}
$$

Proof. If we prove it for simple σ then since the estimate is uniform, we can approximate the given σ by simple σ_{n}. Since simple ones are essentially piecewise constant and the estimate is true for Brownian motion, it is easy to verify that with

$$
x_{n}(t)=x+\int_{0}^{t} \sigma_{n}(s, \omega) d \beta(s)
$$

we do have

$$
\left|E^{P}\left[\int_{0}^{T} f\left(s, x_{n}(s)\right) d s\right]\right| \leq C_{n}\|f\|_{2}
$$

for some finite C_{n}. It remains to bound C_{n} independent of n.
If we take as before $u=G_{0} f$ and apply Itô's formula

$$
\begin{aligned}
u(s, x) & =E^{P}\left[\int_{s}^{T}\left[u_{s}\left(s, x_{n}(s)\right)+\frac{1}{2} a_{n}(s, \omega) u_{x x}\left(s, x_{n}(s)\right)\right] d s\right] \\
& =E^{P}\left[\int_{s}^{T} f\left(s, x_{n}(s)\right)+\frac{1}{2}\left[a_{n}(s, \omega)-C\right] u_{x x}\left(s, x_{n}(s)\right) d s\right]
\end{aligned}
$$

We can conclude that

$$
\left|E^{P}\left[\int_{s}^{T} f\left(s, x_{n}(s)\right) d s\right]\right| \leq|u(s, x)|+\frac{C-c}{2} E^{P}\left[\int_{s}^{T}\left|u_{x x}\left(s, x_{n}(s)\right)\right| d s\right]
$$

If we use the bound $\left\|u_{x x}\right\|_{2} \leq \frac{2}{C}\|f\|_{2}$, denoting by C_{n} the supremum

$$
C_{n}=\sup _{\|f\| \leq 1} E^{P}\left[\int_{s}^{T} f\left(s, x_{n}(s)\right) d s\right] \mid
$$

we obtain

$$
C_{n} \leq C_{T}+\frac{C-c}{2} \frac{2}{C} C_{n}=C_{T}+\rho C_{n}
$$

Since $C_{n}<\infty$ we have $C_{n} \leq \frac{C_{T}}{1-\rho}$.
Remark 11.1. If $d=1$ for any $[a, b]$ with $0<c \leq a(s, x) \leq C<\infty$ and $|b| \leq C$ there is a unique $P=P_{s, x} \in \mathcal{I}(s, x, a, b)$. It is then a strong Markov process.

