
1. Application.

We now present an application of the methods of large deviations. Let us consider the
usual random walk on Zd. Suppose certain sites in Zd were traps. The sites that are traps
are chosen randomly and the probability of a given site being a trap is p and for different
sites the choices are made independently. The ”environment ” is random Bernoulli where
the proportion p of sites that are traps is some fixed 0 < p < 1. Although we could look
at random walk in discrete time, it is slightly more convenient to study the continuous
time situation where the jumps to the nearest neighbor sites are made after successive
independent exponential waiting times with mean 1

d .
The continuous time random walk in d-dimensions has generator

Lf(x) =
1
2

∑
y:y∼x

[f(y)− f(x)]

where [y : y ∼ x] refers to the 2d neighbors of x. The random walk is terminated as soon as
a trap is encountered. The penalty is rather severe. We want to estimate the probability

Pr
[

The random walk avoids a trap during [0, t]
]

especially its decay rate as t→∞. Since it perfectly safe for the process to revisit any site
that it has already visited and survived, we can calculate the above probability as E

[
pξ(t)]

where ξ(t) is the number of distinct sites visited by the random walk. The problem then
clearly is to estimate this expectation. To get a lower bound on the probability is to make
sure that the number of distinct sites visited is rather small or at least not too large. Trying
to limit the number of steps is one way. Maybe the random walk did not take too many
steps. This is rather unlikely because the number of steps is Poisson with parameter t
and the probability that it takes value smaller than (1− δ)t is exponentially small in t for
any δ > 0. On the other hand it might better to confine it to a small region around the
starting point. To confine it to a ball of radius

√
t is no big deal because it is the normal

behavior. However confining it to a ball of radius tα for some α < 1
2 is going be an event

of small probability. To calculate this probability, we will see by LDP that the probability
of confinement is roughly exp[−λt] where λ is the smallest Dirichlet eigen value for the
operator −L for the region in question. For a ball of radius rtα the operator L should be
well appproximated by ∆ the Laplacian and λ ≡ cd(rt)−2α for some cd > 0. The number
of lattice sites in a ball of radius (rt)α is of course vd(rt)αd where vd is the volume of the
unit ball in d dimensions. We clearly have then a lower bound

E
[
pξ(t)] ≥ exp[vd(log p)(rt)αd − cdr−2t1−2α]

It is easy to convince oneself that the optimal choice is α = 1
d+2 so that by optimizing with

respect to the constant r one can make the lower bound to equal approimately exp[−kdt
d
d+2 ]

with an explicit constant kd. The precise theorem is
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Theorem 1.1. For any ν > 0,

lim inf
t→∞

1

t
d
d+2

logE
[

exp[−νξ(t)]
]

= kd(ν)

where kd(ν) > 0 is explicitly given as

inf
r>0

[νvd(− log p)r
d
d+2 + cdr

2
d+2 ]

Proof. The main step is to provide a bound of the form

log Pr
[

the random walk is confined to the ball of radius ` during [0, t]
]
≥ −cd

t

`2

where cd is the Dirichlet ground state eigen value of the properly normalized Laplacian
for the unit ball. The idea is that the central limit theorem will allow us to replace the
random walk by Brownian motion. Let G be a nice region and let G1 ⊂ G be such that
G1 ⊂ Ḡ1 ⊂ G be compactly contained in G. Let us denote by

p(t) = inf
x∈G1

Px[x(s) ∈ G for 0 ≤ s ≤ t and x(t) ∈ G1]

From the eigen function expansion

pG(t, x, y) =
∑
j

eλjtφj(x)φj(y)

valid for the fundamental solution of the heat equation with Dirichlet boundary conditions

p(t) ∼ [ inf
x∈G1

φ1(x)]e−λ1t

∫
G1

p(t, x, y)dy

By general Markov property p(nt) ≥ p(t)n and the exponential decay rate of p(t) is the
groundstate Dirichlet eigenvalue λ1. Now if we denote by q`(t, i, j)the probability of tran-
sition from i to j for the random walk remaining inside the ball of radius ` during the time
[0, t] again by Markov property

q(`, t) = inf
i∈B `

2

∑
j∈B `

2

q`(t, i, j)

satisfies
q(`, nt) ≥ q(`, t)n

and of course q(`, t) is a lower bound for the probability in question. The functional central
limit theorem assures us that

lim
`→∞

q(`, t`2) = p(t)

for the suitably normalized Brownian motion. Since q(`, t) ≥ [q(`, T `2)]
t
T`2 , for t >> `2 it

is easy to establish

lim
`→∞
t→∞
t
`2
→∞

`2

t
log Pr

[
the random walk is confined to the ball of radius ` during [0, t]

]
≥ −cd
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the groundstate eigenvalue of the normalized Laplacian for the unit ball in Rd. �

Now we work towards an upper bound which is harder. We need to estimate Pr[ξ(t) ≤ n]
from above. For the lower bound we could choose a single set E of cardinality n and
estimate Pr[x(s) ∈ E for 0 ≤ s ≤ t] and we simply optimized over suitable choices of E.
Although this will provide a reasonable upper bound for each E to get a real upper bound
for the probability in question we have to sum over different E’s and they are just too
many to make the upper obtained in this manner to be meaningful. So we proceed rather
carefully to obtain the upper bound using techniques from large deviation theory. Since
we are dealing with upper bounds we know that compactness will be a serious issue. We
obtain compactness if we replace Zd ⊂ Rd by a sublattice ZdN ⊂ T d` the d-dimensional
torus of size `. We will pick ZdN to be the sublattice modulo `t

1
d+2 and imbed it inside the

torus of size ` by scaling the lattice sites by a factor of h = t−
1
d+2 . Let us rescale time by

a factor of h2 = t−
2
d+2 so that our new random walk has the generator

Lhf(x) =
1

2h2

∑
y

[f(x+ hy)− f(x)]

on the torus T d` and runs upto time τ = t
d
d+2 . Since the projection on to any torus reduces

the number of distinct sites

Pr[ξ(t) ≤ n] ≤ Ph,`[ξ(τ) ≤ n]

and we could try to calculate

−θ(`) = lim sup
τ→∞

1
τ

logPh,`[ξ(τ) ≤ aτ ]

and, it would follow that

lim sup
t→∞

Pr[ξ(t) ≤ at
d
d+2 ] ≤ − lim sup

`→∞
θ(`).

Step 1. Let us consider a Markov process with generator Lh on the torus T d` for times

0 ≤ t ≤ τ , starting from the origin and view the occupation measure

µτ (A) =
1
τ

∫ τ

0
χA(x(s))ds

as an element of M` the space of probability measure on the torus T d` . If we denote the
process by Ph and the measure induced on M` by Qh,τ we want a large deviation upper
bound for closed sets C ⊂M`,

lim sup
τ→∞

1
τ

logQh,τ [C] ≤ − inf
µ∈C

I(µ)

where I(µ) is the rate function for Brownian motion

I`(µ) =
1
8

∫
T d`

|∇f |2

f
dx
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Suppose U(x) is a smooth positive function on the torus, by Feynman-Kac formula

U(0) = EPh
[

exp[
∫ τ

0

LhU

U
(x(s))ds]U(x(τ))

]
≥ infx U(x)

supx U(x)
EQh,τ

[
exp[τ

∫
LhU

U
(x)dµ(x)]

]
Although h is related to τ by the relation h = τ−

1
d it plays no role in this calculation. As

h→ 0, LhUU → ∆U
2U , and this will give by Tchebechev’s inequality a local decay rate for Qh,τ

around µ of the form

lim sup
N↓µ

lim sup
τ→∞

1
τ

logQh,τ [N ] ≤
∫

∆U
2U

dµ

It is a simple matter to check that

inf
U>0

∫
∆U
2U

dµ = I(µ).

Since the space is compaact this is enough to provide the upper bound. Unfortunately this
upper bound as it stands is worthless. The set ξ(τ) ≤ at

d
d+2 or ξ(τ) ≤ aτ is expressed very

badly in terms of the cardinality of the support of the occupation measure µt. It is very
unstable in the weak topolgy for µ.

Step 2. We take the uniform distribution on a small cube of side h which is just enough
to cover the gaps between the lattice points and convolute µ with it. More specifically we
have a map φh mapping M` into L1[T d` ]. If we denote by Q′h,` the measure induced on
L1 we would like to show that an LDP holds in L1 with the same rate function as before
namely I(µ). Once this is done

1

t
d
d+2

ξ(t) = |x : µ ∗ φh > 0|

and the function |x : f(x) > 0| is not a bad function on L1. It is infact lower semicontinuous
in the strong topology of L1. Therefore we would have that {ξ(t) ≤ at

d
d+2 } = {|x :

µτ ∗ φh(x) > 0| ≤ a} is a closed set in L1 (Here |A| is the Lebesgue measure of the set A)
there by giving us the upper bound

θ(`) = inf {I(f) || f : |x : f(x) > 0| ≤ a}

and if we let ` → ∞ it is not hard to see that the torus gets replaced by Rd. In the end
the upper bound involves

inf {I(f) || f : |x : f(x) > 0| ≤ a}

where the same quantities are now considered on Rd. If we fix the set A, then clearly

inf
suppf⊂A

I(f) = λ1(A)
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the First Dirichlet eigenvalue of −1
2∆ for the region A. We now have to carry out the

minimizing of λ1(A) over all A with a given volume. By isoperimetric inequality this is
achieved for a ball. The best bet is to take a ball of suitable radius, and if we do that we
match the lowerbound because that is how we derived it.

Step 3. The proof of the LDP in L1. We already have an LDP for Qh,τ onM`. The ques-
tion really is if convolution with φh is enough mollification to get us exponential tightness
in L1. We will assume the following lemma which we will prove later, and show that the
proof can be completed modulo the lemma. Lemma: Let us consider Q′h,ε on L1. Then

denoting by by gε some approximation of identity and by fε = f ∗ gε

lim sup
ε→0

lim sup
τ→∞

1
τ

logQ′h,τ
[
f : ‖f − fε‖ ≥ δ

]
= −∞

for every δ > 0. Given the lemma, for any closed set C ⊂ L1

Q′h,τ [f ∈ C] ≤ Q′h,τ [fε ∈ Cδ] +Q′h,τ [‖f − fε‖ ≥ δ]

Since convolution by gε is a continuous map from M` into L1, if we denote by C̄δ the
closure of Cδ in L1

lim sup
τ→∞

1
τ

logQ′h,τ [fε ∈ C̄δ] ≤ kε = − inf
f :fε∈C̄δ

I(f)

From the lemma the second part will be super-exponentially small and the proof is com-
pleted by letting ε→ 0. Proof of Lemma. We need to evaluate

Qh,τ [µ : ‖µ ∗ φh ∗ gε − µ ∗ φh‖ ≥ δ]
We do it in the following manner.

‖µ ∗ φh − µ ∗ φh ∗ gε‖ = sup
V :|V |≤1

∫
[V ∗ φh ∗ fε − V ∗ φh]dµ(x)

= sup
W :W=φh∗V
|V |≤1

∫
[W ∗ fε −W ]dµ(x)

We would like to find a finite number N of W ’s such that any other W is with in a
distance δ

4 of one of these. Assume we can do that with a choice N = N(h) that we will
estimate later. Then

Qh,τ [µ : ‖µ ∗ φh ∗ gε − µ ∗ φh‖ ≥ δ] ≤ Qh,τ [ sup
1≤i≤N

∫
[Wi ∗ fε −Wi]dµ(x) ≥ δ

2
]

≤ N sup
1≤i≤N

Qh,τ [
∫

[Wi ∗ fε −Wi]dµ(x) ≥ δ

2
]

We need therefore to estimate two terms : Step 1. Uniformly for W with |W | ≤ b
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E0

[
exp[

∫ τ

0
W (x(s))ds]

]
≤ Cb exp[τλh(W )]

for a constant independent of W and h, where λh(W ) is the first eigenvalue of the operator
Lh +W . By local limit theorem it is easy to get a bound of the form

sup
x.x′

ph(1, x, y)
ph(1, x′, y)

≤ C

uniformly as h→ 0. Using Markov property

Ex
[

exp[
∫ τ

0
W (x(s))ds]

]
≤ ebEx

[
exp[

∫ τ

1
W (x(s))ds]

]
= eb

∫
ph(1, x, dy)Ey

[
exp[

∫ τ−1

0
W (x(s))ds]

]
≤ ebC

∫
ph(1, x′, dy)Ey

[
exp[

∫ τ−1

0
W (x(s))ds]

]
≤ e2bCEx′

[
exp[

∫ τ

0
W (x(s))ds]

]
If we denote by

U(τ, x) = Ex
[

exp[
∫ τ

0
W (x(s))ds]

]
then by Markov property supx U(τ, x) is submultiplicative and infx U(τ, x) is supermul-
tiplicative. Their ratio is bounded uiformly by Cδ. Their growth is exponential with a
constant λh(W ). Therefore

inf
x
U(τ, x) ≤ exp[τλh(W )] ≤ sup

x
U(τ, x) ≤ Cb inf

x
U(τ, x)

and we are done. Now we can estimate by Tchebechev’s inequality. If we can show that

lim sup
ε→0

sup
V :|V |≤σ

λh(V − V ∗ gε) = 0

for every σ > 0, then the probability will be superexponentially small. By the variational
formula

λh(V − V ∗ gε) = sup
ψ

∑
x

V (x)[ψ(x)− ψ ∗ gε(x)]− Ih(g)

and we need only to control the L1 modulus continuity∑
x

|ψ(x+ z)− ψ(x)|

in terms of the Dirichlet form ∑
x,y
x∼y

|
√
ψ(x)−

√
ψ(y)|2

and this is done by Schwarz’s inequality.
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Step 2. Now it is just a question of estimating the number N = N(h). The set functions
W that we have to deal with are defined on a lattice in T d` with (`h)−d = `dτ points in

it. So the set in question is the cube of side 2 in R`
dτ and needs

(
8
δ

)`dτ points to populate
with in a distance of δ

2 from every W . This is only an exponential growth in τ and does
not affect the superexponential decay.


