
1. Strassen’s Law of the Iterated Logarithm.

Let P be the Wiener measure on the space Ω = C[0,∞) of continuos functions on [0,∞)
that starts at time 0 from the point 0. For λ ≥ 3 we define the rescaled process

xλ(t) =
1√

λ log log λ
x(λt).

As λ → ∞, xλ(t) will go to 0 in probability with respect to P , but the convergence will
not be almost sure. Strassen’s theorem states:

Theorem 1.1. On any fixed time interval, say [0, 1], for almost all ω = x(·), the family
{xλ(·) : λ ≥ 3} is compact and has as its set of limit points the compact set

K = {f : I(f) ≤ 1}
where

I(f) =
1

2

∫ 1

0
[f ′(t)]2dt.

Proof. We will divide the proof into several steps. The first part is to prove that If Kǫ is
a neighborhhod of size ǫ around K then, for almost all ω, xλ(·) ∈ Kǫ for sufficiently large
λ. This is proved in two steps.

Fisrt we sample xλ(·) along a discrete sequence λ = ρn for some ρ > 1 and show that
almost surely, for any such ρ, xρn(·) ∈ K ǫ

2
for sufficiently large n. This requires just the

Borel-Cantelli lemma. We need to show that
∑

n

Pr[xρn(·) ∈ Kc
ǫ
2
] < ∞.

We use the results of the LDP proved in the last section to estimate for any closed set C,

Pr[xρn(·) ∈ C] = Pan [C]

where Pan is the Wiener measure scaled by 1√
log log ρn ∼ 1√

log n
. From the results proved in

the last section

log Pan [C] ≤ −[ℓ − δ] log n

for sufficiently large n, and to complete this step we need to prove only that

ℓ = inf
f∈C

I(f) = inf
f∈Kc

ǫ
2

I(f) > 1

which is obvious because we have removed a neighborhood of the set K consisting of all f
with I(f) ≤ 1.

The second step is to show that the price for sampling is not too much. More precisely
we will show that, almost surely,

lim sup
n→∞

sup
ρn≤λ≤ρn+1

‖xλ(·) − xρn+1(·)‖ ≤ θ(ρ)

1
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where θ(ρ) is nonrandom and → 0 as ρ ↓ 1. We then pick our ρ so that θ(ρ) < ǫ
2 to

complete the proof. If λ2 > λ1 we can estimate

|xλ2(t) − xλ1(t)| ≤ | 1√
λ2 log log λ2

− 1√
λ1 log log λ1

| |x(λ1t)| +
1√

λ2 log log λ2
|x(λ2t) − x(λ1t)|

≤
∣

∣

∣

∣

∣

√

λ1 log log λ1

λ2 log log λ2
− 1

∣

∣

∣

∣

∣

‖xλ1(·)‖ + |xλ2(t) − xλ2(
λ1

λ2
t)|

Taking the supremum over 0 ≤ t ≤ 1,

‖xλ2(·) − xλ1(·)‖ ≤
∣

∣

∣

∣

∣

√

λ2 log log λ2

λ1 log log λ1
− 1

∣

∣

∣

∣

∣

‖xλ2(·)‖ + sup
|t−s|≤|λ1

λ2
−1|

|xλ2(t) − xλ2(s)|.

If we now take λ2 = ρn+1 and λ1 = λ with ρn ≤ λ ≤ ρn+1

lim sup
n→∞

sup
ρn≤λ≤ρn+1

‖xλ(·)−xρn+1(·)‖ ≤ |√ρ−1| lim sup
n→∞

‖xρn+1(·)‖+lim sup
n→∞

sup
|t−s|≤|1− 1

ρ
|
|xρn+1(t)−xρn+1(s)|.

One of the consequences of the result proved in the earlier step is that for any continuos
functional F : Ω → R, almost surely,

lim sup
n→∞

F (xρn(·)) ≤ sup
f∈K

F (f).

Therefore, almost surely

lim sup
n→∞

sup
ρn≤λ≤ρn+1

‖xλ(·) − xρn+1(·)‖ ≤ |√ρ − 1| sup
f∈K

‖f‖ + sup
f∈K

sup
|t−s|≤1− 1

ρ

|f(t) − f(s)|

= θ(ρ)

and it is easily seen that θ(ρ) → 0 as ρ ↓ 1.
Now we turn to the second part where we need to prove that xλ(·) returns infinitely

often to any neighborhood of any point f ∈ K. We can assume without loss of generality
that I(f) = ℓ < 1, for such points are dense in K. Again we apply the Borel-Cantelli
lemma but now we need independence. Let us define an = ρn − ρn−1, and for 0 ≤ t ≤ 1

yn(t) =
1√

an log log an

[x(ρn−1t + ant) − x(ρn−1)].

The distribution of yn(·) is the same as that of Brownian motion scaled by 1√
log log an

and

from the LDP results of the last section for any η > 0

log Pr
[

‖yn(·) − f‖ <
δ

2

]

≥ −(ℓ + η) log n

for sufficiently large n and this shows that

∑

n

Pr
[

‖yn(·) − f‖ <
δ

2

]

= +∞.
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Because yn(·) are independent, by Borel-cantelli lemma, yn(·) returns infinitely often to
the δ

2 neighborhood of f .
The last piece of the proof then is to show that, almost surely ,

lim sup
n→∞

‖xρn(·) − yn(·)‖ ≤ θ(ρ)

where θ(ρ) → 0 as ρ ↑ ∞. We could then complete the proof by picking ρ large enough
that θ(ρ) < δ

2 . Then xρn(·) would return infinitely often to the δ neighborhood of f . Hence
so does xλ(·) for every δ > 0.

|xρn(t) − yn(t)| =

∣

∣

∣

∣

x(ρnt)√
ρn log log ρn

− (x(ρn + ant) − x(ρn))√
an log log an

∣

∣

∣

∣

≤
∣

∣

1√
ρn log log ρn

− 1√
an log log an

∣

∣ |x(ρnt)| + 1√
an log log an

|x(ρnt) − x(ρn−1 + ant)|

+
1√

an log log an

|x(ρn)|

≤
∣

∣

√
ρn log log ρn

√
an log log an

− 1
∣

∣ |xρn(t)| +
√

ρn log log ρn

√
an log log an

|xρn(t) − xρn(
1

ρ
+ [1 − 1

ρ
]t)|

+

√
ρn log log ρn

√
an log log an

|xρn(
1

ρ
)|

Taking the supremum over 0 ≤ t ≤ 1,

‖xρn(·)−yn(·)‖ ≤
∣

∣

√
ρn log log ρn

√
an log log an

−1
∣

∣

∥

∥xρn(·)‖+
√

ρn log log ρn

√
an log log an

[

sup
|t−s|≤ 1

ρ

|xρn(t)−xρn(s)|+xρn(
1

ρ
)
]

.

Again from the first part we conclude that, almost surely,

lim sup
n→∞

‖xρn(·) − yn(·)‖ ≤
∣

∣

∣

∣

√

ρ

ρ − 1
− 1

∣

∣

∣

∣

sup
f∈K

‖f‖ +

√

ρ

ρ − 1
sup
f∈K

[

f(
1

ρ
) + sup

|t−s|≤ 1
ρ

|f(t) − f(s)|
]

= θ(ρ)

It is easily checked that θ(ρ) → 0 as ρ ↑ ∞. This concludes the proof. �

Remark 1.2. As we commented earlier we can calculate for any continuous F : Ω → R,

lim sup
λ→∞

F (xλ(·)) = sup
f∈K

F (f)

almost surely. Some simple examples are: if F (f) = f(1) we get, almost surely,

lim sup
t→∞

x(t)√
t log log t

=
√

2 = sup
f∈K

f(1)
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or if F (f) = sup0≤s≤1 |f(s)|, we get for almost all Wiener paths,

lim sup
t→∞

sup0≤s≤t |x(s)|√
t log log t

=
√

2 = sup
f∈K

sup
0≤s≤1

|f(s)|

Remark 1.3. There is a way of recovering laws of iterated logarithms for sums of inde-
pendent random variables from Strassen’s theorem for Brownian Motion. This requires
a concept known as Skorohod imbedding. If X is a random variable with mean zero and
variance σ2, we find a stopping time τ (perhaps randomized) such that E{τ} = σ2and x(τ)
has the same distribution as X. Then the random walk gets imbedded in the Brownian
Motion and the LIL for random walk is deduced from the LIL for the Brownian Motion.
For instance if X = ±1 with probability 1

2 each, τ is the hitting time of ±1. As an excercise
look up the reference and study the details.

2. Behavior of Diffusions with a small parameter.

In this section we will investigate the Large Deviation behavior of the family of diffusion
processes P ǫ

x corresponding to the generator

Lǫ =
ǫ2

2

∑

i,j

ai,j(x)
∂2

∂xi ∂xj
+

∑

j

bj(x)
∂

∂xj

that start from the point x ∈ Rd. The family P ǫ
x will be viewed as a family of measures on

the space C[[0, T ];Rd] of continuous functions on [0, T ] with values in Rd. As we let ǫ → 0,
the generator converges to the first order operator

L0 =
∑

j

bj(x)
∂

∂xj
.

If we impose enough regularity on b(x) = {bj(·)} so that the trajectories of the ODE

dx(t)

dt
= b(x)

are unique, then the processes P ǫ
x will converge as ǫ → 0 to the degenerate distribution

concentrated at the unique solution of the above ODE that starts from the initial point
x(0) = x. We are interested in the validity of LDP for these measures P ǫ

x.
If we use the theory of Stochastic Differential Equations, we would take a square root σ

such that σσ∗ = a = {aij} and solve the SDE

dx(t) = ǫσ(x(t))dβ(t) + b(x(t))dt

with x(0) = x. We would then view the solution x(t) as a map Φx,ǫ of the Wiener space

C[[0.T ];Rd] with the Wiener measure Q back to C[[0.T ];Rd] and the map will induce P ǫ
x

as the image of Qǫ. In fact we can absorb ǫ in β and rewrite the SDE as

dx(t) = σ(x(t))d[ǫβ(t)] + b(x(t))dt
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and think of the map Φx as independent of ǫ and mapping the scaled Wiener measures
Qǫ into P ǫ

x. The advantage now is that we may try to appeal to the contraction principle
and deduce the LDP of P ǫ

x from that of Qǫ that we established in Section 3. The map
Φx : f(·) → x(·) is defined by

dx(t) = σ(x(t))df(t) + b(x(t))dt ; x(0) = x.

Let us ignore for the moment that this map is not defined everywhere and is far from
continuous. At the level of rate functions we see the map as

g′(t) = σ(g(t))f ′(t) + b(g(t)) ; g(0) = x

and if we assume that σ or equivalently a is invertible,

f ′(t) = σ−1(g(t))[g′(t) − b(g(t))]

and
1

2

∫ T

0
‖f ′(t)‖2dt =

1

2

∫ T

0
〈[g′(t) − b(g(t))], a−1(g(t))[g′(t) − b(g(t))]〉dt

The reasoning above is not quite valid because the maps Φx are not continuous and the
contraction principle is not directly applicable. We will have to replace Φx by continuous
maps Φn,x and try to interchange limits. Although we can do it in one step, inorder to
illustrate our methods in a better manner, we will perform this in two steps. Let us suppose
first that b ≡ 0. The map Φn,x is defined by

xn(t) = x +

∫ t

0
σ(xn(πn(s)))dβ(s)

where

πn(s) =
[ns]

n
Although xn(·) appears to be defined implicitly it is in fact defined explicitly, by induction
on j, using the updating rule

xn(t) = xn(
j

n
) +

∫ t

j
n

σ(xn(
j

n
))dβ(s)

for j
n
≤ t ≤ j+1

n
. The map Φn,x are clearly continuous and the contraction principle applies

to yield an LDP for the distribution P ǫ
n,x of Φn,x under Qǫ with a rate function that is

easily seen to equal

In(g) =
1

2

∫ T

0
〈g′(t), a−1(g(πn(t)))g′(t)〉dt

for functions g with g(0) = x that have a square integrable derivative in t. Otherwise
In(g) = +∞. We will prove the following superexponential approximation theorem.

Theorem 2.1. For any δ > 0, and compact set K ⊂ Rd,

lim sup
n→∞

lim sup
ǫ→0

sup
x∈K

ǫ2 log Qǫ

[

‖Φn,x(·) − Φx(·)‖ ≥ δ
]

= −∞
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If we have the approximation theorem then it is straight forward to interchange the ǫ
and n limits.

Theorem 2.2. For the measures P ǫ
n,x an LDP holds with the rate function

Ix(f) =
1

2

∫ T

0
〈f ′(t), a−1(f(t))f ′(t)〉dt

for functions f(t) with a square integrable derivative that satisfy f(0) = x and equal to +∞
otherwise.

Proof. Let C ∈ C[0.T ] be closed and δ > 0 be positive. Then

P ǫ
x[C] = Qǫ

[

Φx(·) ∈ C
]

≤ Qǫ

[

Φn,x(·) ∈ Cδ
]

+ Qǫ

[

‖Φn,x(·) − Φx(·)‖ ≥ δ
]

Taking logarithms, multiplying by ǫ2 and taking limsups

lim sup
ǫ→0

ǫ2 log P ǫ
x[C] ≤ −max{an,x(δ), bn,x(δ)}

where

an,x(δ) = inf
g∈C̄δ

In.x(g)

and in view of the superexponential estimate,

lim sup
n→∞

bn,x(δ) = −∞.

We therefore obtain for every δ > 0,

lim sup
ǫ→0

ǫ2 log P ǫ
x[C] ≤ − lim sup

n→∞
an,x(δ)

and finally letting δ → 0, it is easily seen that

lim sup
δ→0

lim sup
n→∞

an,x(δ) ≥ − inf
g∈C

Ix(g).

To prove the lower bound, we take a small ball B(g, δ) around g and

P ǫ
x[B(g, δ)] = Qǫ[Φx ∈ B(g, δ)] ≥ Qǫ[Φn,x ∈ B(g,

δ

2
)] − Qǫ[ ‖Φn,x(·) − Φx(·)‖ ≥ δ

2
]

For large n the second term decays a lot faster than the first term and so we get the lower
bound

lim inf
ǫ→0

ǫ2 log P ǫ
x[B(g, δ)] ≥ − lim inf

n→∞
In,x(g) = −Ix(g)

and we are done. �

We now return to the proof of the Theorem on super-exponential estimates. We will
carry it out in several steps each of which will be formulated as a lemma.
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Lemma 2.3. Let ξ(t) be a stochastic integral of the form

ξ(t) =

∫ t

0
σ(s, ω)dβ(s)

with values in Rd, with a σ satisfying the bound

σ(s, ω)σ∗(s, ω) ≤ C(‖ξ(s)‖2 + δ) I

for some constant C. Let α > 0 be a positive number and let τα be the stopping time

τα = inf{t : ‖x(t)‖ ≥ α}.
Then for any T > 0

Pr[τα ≤ T ] ≤ exp

[

−
[log(1 + α2

δ2 )]2

4kdCT

]

.

where kd is a constant depending only on the dimension.

Proof. Consider the function

U(x) = (δ2 + ‖x‖2)N

with the choice of N to be made later. One can easily estimate

1

2

∑

i,j

(σσ∗)i,j(s, ω)
∂2U

∂xi∂xj
(ξ(s)) ≤ kdCN2U(ξ(s))

where kd is a constant depending only on the dimension d. If we pick N so that, for some
λ > 0,

kdCN2 = λ

then e−λtU(ξ(t)) is a supermartingale and

E{exp[−λτα]} ≤
[

δ2

δ2 + α2

]N

and by Tchebechev’s inequality

Pr[τα ≤ T ] ≤ exp[λT ]

[

δ2

δ2 + α2

]N

Making the optimal choice of

λ =
[log(1 + α2

δ2 )]2

4kdCT

we obtain

Pr[τα ≤ T ] ≤ exp

[

−
[log(1 + α2

δ2 )]2

4kdCT

]

.

�
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Lemma 2.4. If we drop the assumption that

σ(s, ω)σ∗(s, ω) ≤ C(‖ξ(s)‖2 + δ) I

we get instead the estimate

Pr
[

τα ≤ T
]

≤ exp

[

−
[log(1 + α2

δ2 )]2

4kdCT

]

+1−Pr
[

σ(s, ω)σ∗(s, ω) ≤ C(‖ξ(s)‖2+δ) I ∀s ∈ [0, T ]
]

.

Proof. The proof is routine. Just have to make sure that the stochastic integral is modified
in an admissible manner to give the proof. Try the details as an exercise. �

We now return to prove the super-exponential estimate.

Proof.

xn(t) − x(t) = ǫ

∫ t

0
[σ(xn(πn(s))) − σ(x(s))]dβ(s)

= ǫ

∫ t

0
[σ(xn(πn(s))) − σ(xn(s))]dβ(s) + ǫ

∫ t

0
[σ(xn(s)) − σ(x(s))]dβ(s)

If we fix n and consider

ξ(t) =

∫ t

0
σ(s, ω)dβ(s)

with

σ(s, ω) = ǫ
[

[σ(xn(πn(s))) − σ(xn(s))] + [σ(xn(s)) − σ(x(s))]
]

then

σσ ∗ (s, ω) ≤ Cǫ2[ ‖ξ(s)‖2 + δ2] I

provided

sup
0≤s≤T

‖xn(πn(s)) − xn(s)‖ ≤ δ.

If we apply the earlier lemma we get

Qǫ

[

‖Φn,x(·)− Φx(·)‖ ≥ α
]

≤ exp

[

−
[log(1 + α2

δ2 )]2

4kdCǫ2T

]

+ Qǫ

[

sup
0≤s≤T

‖xn(πn(s))− xn(s)‖ ≥ δ
]

If we assume that σ(·) is uniformly bounded, the second term is dominated by

nT exp[−nδ2

Aǫ2
].

for some constant A. We now conclude the proof of the superexponential estimate by
estimating

lim sup
ǫ→0

ǫ2 log Qǫ

[

‖Φn,x(·) − Φx(·)‖ ≥ α
]

≤ −min

{

[log(1 + α2

δ2 )]2

4kdCT
,
nδ2

Cǫ2

}

For fixed α and δ we can let n → ∞ and then let δ → 0 keeping α fixed to get −∞ on the
right hand side. �
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Remark 2.5. If we look at the distribution at time 1 of P ǫ
x we have the transition proba-

bility pǫ(1, x, dy) that is viewed as probability measures on Rd. The LDP for them is now
obtained by the contraction principle with the rate function

I(x, y) = inf
f(0)=x

f(1)=y

1

2

∫ 1

0
〈f ′(t), a−1(f(t)) f ′(t)〉 dt

=
[d(x, y)]2

2

where d is the Riemannian distance in the metric ds2 = a−1
i,j (x)dxidxj.

Remark 2.6. The distribution pǫ(1, x, dy) is the same as p1(ǫ
2, x, dy) and so for the tran-

sition probability distributions p(t, x, dy) of the diffusion process with generator

L =
1

2

∑

i,j

ai,j(x)
∂2

∂xi∂xj

we hace an LDP as t → 0 with rate function [d(x,y)]2

2 .

Remark 2.7. All the results are valid locally uniformly in the starting point x. What we
mean by that is if we take Pǫ = Pxǫ,ǫ, so long as xǫ → x as ǫ → 0, the LDP is valid for Pǫ

with the same rate function as the one for Px,ǫ.

Remark 2.8. Just for the record the assumptions on a are boundedness, uniform ellipticity
or the boundedness of a−1 and a uniform Lipschitz condition on a or equivalently on σ.

Remark 2.9. Under the above regularity conditions one can look around in PDE books
and find that for the equation

∂u

∂t
= Lu

there is a fundamental solution which is nothing else but the density p(t, x, y) of the tran-
sition probability distribution. There are some reasonable estimates for it that imply

lim sup
|x−y|→0

lim sup
t→0

t log p(t, x, y) = lim inf
|x−y|→0

lim inf
t→0

t log p(t, x, y) = 0.

One can use the Chapman-Kolmogorov equations to write

p(t, x, y) =

∫

Rd

p(αt, x, dz)p(1 − αt, z, y)

and bootstrap from the LDP of p(t, x, dy) to the behavior of p(t, x, y) itself

lim
t→0

t log p(t, x, y) = − [d(x, y)]2

2
.

We now turn our attention to the operator

Lǫ =
ǫ2

2

∑

i,j

ai,j(x)
∂2

∂xi∂xj
+

∑

j

bj(x)
∂

∂xj
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If we denote by P ǫ
x,b the probability measure corresponding to the above operator, and by

P ǫ
x the measure corresponding to the operator with b ≡ 0, Girsanov formula provides the

Radon-Nikodym derivative

dP ǫ
x.b

dP ǫ
x

= exp

{

1

ǫ2

∫ T

0
〈a−1(x(s)b(x(s)), dx(s)〉 − 1

2ǫ2

∫ T

0
〈b(x(s)), a−1(x(s))b(x(s))〉ds

}

If we pretend that the exponent

F (ω) =

∫ T

0
〈a−1(x(s)b(x(s)), dx(s)〉 − 1

2

∫ T

0
〈b(x(s)), a−1(x(s))b(x(s))〉ds

is a bounded, continuous function on C[0, T ], then the LDP for P ǫ
x,b would follow from the

LDP for P ǫ
x with the rate function

Ix.b(g) = Ix(g) + F (g) =
1

2

∫ T

0
〈[g′(t) − b(g(t))], a−1(g(t))[g′(t) − b(g(t))]〉 dt

which is what we wanted to prove. The problem really is taking care of the irregular nature
of the function F (·). We leave it as an exercise to show that the following lemma will do
the trick.

Lemma 2.10. There exist bounded continuous functions Fn,ℓ(·) such that for every real λ
and C < ∞,

lim sup
ℓ→∞

lim sup
n→∞

ǫ2 log E

{

exp
[ λ

ǫ2
[Fn,ℓ(ω) − F (ω)]

]

}

= 0

and
lim
ℓ→∞

lim
n→∞

Fn,ℓ(g) = F (g)

uniformly on {g : Ix(g) ≤ C}.

Proof. Since only the Stochastic Integral part is troublesome we need to approximate

G(ω) =

∫ T

0
〈a−1(x(s)b(x(s)), dx(s)〉.

It is routine to see that

Gn,ℓ(ω) = Gn(ω) if |Gn(ω)| ≤ ℓ

= 0 otherwise

with

Gn(ω) =

∫ T

0
〈a−1

(

x

(

[ns]

n

))

b

(

x

(

[ns]

n

))

, dx(s)〉

will do the trick by repeating the steps in the similar approximation we used earlier during
the course of the proof of the case with b ≡ 0. We leave the details to the reader. �

Remark 2.11. The local uniformity in the starting point continues to hold without any
problems.
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3. The Exit Problem.

The exit problem deals with the following question. Suppose we are given a diffusion
generator Lǫ of the form

Lǫ =
ǫ2

2

∑

i,j

ai,j(x)
∂2

∂xi∂xj
+

∑

j

bj(x)
∂

∂xj

We suppose that ai,j and bj are smooth and that a is uniformly elliptic, i.e. boundedly
invertible. As ǫ → 0 the process will converge to the deterministic solution of the ODE

dx

dt
= b(x(t)).

Let us assume that we have a bounded open set G with the property that for some point
x0 inside G, all trajectories of the above ODE starting from arbitrary points x ∈ G, remain
forever with in G and converge to x0 as t → ∞. In other words x0 is a stable equlibrium
point for the flow and all trajectories starting from G remain in G and approach x0. We
can solve the Dirichlet Problem for Lǫ, i.e solve the equation

LǫUǫ(x) = 0 for x ∈ G

Uǫ(y) = f(y) for y ∈ ∂G

where f is the boundary value of Uǫ specified on the boundary ∂G of G. We will assume
that the domain G is regular and the function f is continuous. The exit problem is to
understand the behavior of Uǫ as ǫ → 0. If we denote by Pǫ,x the measure on path space
corresponding to the generator Lǫ that starts from the point x in G at time 0, then we
know that Uǫ has the representation in terms of the first exit place x(τ) where

τ = inf{t : x(t) /∈ G}.
For any ǫ > 0,

Uǫ(x) = EPǫ,x
[

f(x(τ))
]

.

It is tempting to let ǫ → 0 in the above representation. While Pǫ,x converges weakly to Px

the degenerate measure at the solution to the ODE, since the ODE never exits, τ = +∞
a.e Px for every x ∈ G. What happens to x(τ) is far from clear.

The solution to the exit problem is a good application of large deviations as originally
carried out by Wentzell and Freidlin. Let us consider the rate function

I(x(·)) =
1

2

∫ T

0
〈[x′(t) − b(x(t)], a−1(x(t) [x′(t) − b(x(t))]〉

and define for any x ∈ G and boundary pount y ∈ ∂G

V (x, y) = inf
0<T<∞

inf
x(0)=x

x(T )=y

I(x(·))

and when x = x0

R(y) = V (x0, y)

We have the following theorem
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Theorem 3.1. Suppose for some (necessarily unique) point y0 on ∂G.

R(y) > R(y0) for all y ∈ ∂G, y 6= y0

then,
lim
ǫ→0

Uǫ(x) = f(y0)

for all x ∈ G.

The proof will be based on the following lemma which will be proved at the end.

Lemma 3.2. Let N , a eighborhood of y0 on the boundary, be given. Then there are two
neighborhoods B and H of x0 with x0 ∈ B ⊂ B̄ ⊂ H ⊂ H̄ ⊂ G such that

lim
ǫ→0

supx∈∂H Pǫ,x[E1]

infx∈∂H Pǫ,x[E2]
= 0

where E1 and E2 are defined by

E1 = {x(·) : x(·) exits G in N before visiting B̄}
E2 = {x(·) : x(·) exits G in N c before visiting B̄}

Proof. Given the lemma the proof of the main theorem is easy. Suppose ǫ is small and the
process starts from a point x0 in G. It will follow the ODE and end up inside B before it
exits from G. Then it will hang around x0 inside H for a very long time. Because ǫ > 0 it
will exit from H at some boundary point of H. Then it may exit from G before entering
back into B with a very small probability. This small probability is split between exiting
in N and in N c. Denoting by pn,ǫ and qn,ǫ the respective probabilities of exiting from N
and N c during the n-th trip back from H into B

Pǫ,x[x(τ) /∈ N ] =
∑

n

qn,ǫ

≤ Cǫ pn,ǫ

= CǫPǫ,x[x(τ) ∈ N ]

where Cǫ → 0 as ǫ → 0 according to the lemma. Clearly

Pǫ,x[x(τ) /∈ N ] ≤ Cǫ

Cǫ + 1

and → 0 as ǫ → 0.
The proof of the theorem is complete. �

We now turn to the proof of the lemma.

Proof. We will break up the proof into two steps. First we show that in estimating various
quantities we can limit ourselves to a finite time interval.

Step 1. Let us denote by τB and τG the hitting times of ∂B and ∂G respectively. We
prove that

C(T ) = lim sup
ǫ→0

ǫ2 sup
x∈∂H

log Pǫ,x[(τB ≥ T ) ∩ (τG ≥ T )]
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tends to −∞ as T → ∞. By the large deviation property

C(T ) ≤ − inf{I(x(·)) ;x(·) : x(0) ∈ ∂H, x(t) ∈ G ∩ Bc for 0 ≤ t ≤ T}
If C(T ) does not go to −∞ as T → ∞ by the additivity property of the rate function ,
there will be a long interval [T1, T2] over which

∫ T2

T1

〈[x′(t) − b(x(t)]a−1(x(t)[x′(t) − b(x(t))]〉dt

will be small. This in the limit will give us a trajectory of the ODE that lies in G∩Bc for
all times thereby contradicting stability.

Step 2. One can construct trajectories that connect points close to each other that have
rate functions no larger than the distance between them. Just go from one point to the
other at speed 1 on a straightline. Suppose R(y0) = ℓ and R(y) ≥ ℓ + δ on N c. We can
pick a small ball H around x0 such that for some T0 < ∞ and for any x ∈ ∂H the following
statements are true: Every path from x that exits from G in the set N c with in time T0

has a rate function that exceeds ℓ + 7
8δ. There is a path from x that exits G in N that has

a rate function that is atmost ℓ + 1
8δ. We can assume that T0 is large eough that C(T0) of

step 1 is smaller than −2ℓ− δ. It is easy to use the LDP and derive the following estimates
uniformly for x ∈ ∂H.

Pǫ,x[τG < τB , x(τG) ∈ N c] ≤ exp[− 1

ǫ2
(ℓ +

7

8
δ)] + exp[− 1

ǫ2
(2ℓ + δ)]

and

Pǫ,x[τG < τB, x(τG) ∈ N ] ≥ exp[− 1

ǫ2
(ℓ +

1

8
δ)] − exp[− 1

ǫ2
(2ℓ + δ)]

The lemma follows from this. �

Remark 3.3. In the special case when A(x) = I and b(x) = −1
2∇F for some F we can

carry out the calculation of the rate function more or less explicitly.
∫ T

0
‖x′(t) +

1

2
(∇F )(x(t))‖2dt =

∫ T

0
‖x′(t) − 1

2
(∇F )(x(t))‖2dt + 2

∫ T

0
〈(∇F )(x(t)), x′(t)〉dt

≥ 2

∫ T

0
〈(∇F )(x(t)), x′(t)〉dt

= 2[F (x(T )) − F (x(0))].

Therefore

V (x, y) ≥ [F (y) − F (x)]

On the other hand if x(t) sojves the ODE

x′(t) = (∇F )(x(t)

with x(0) = y and x(T ) = x, then the trajectory

y(t) = x(T − t) for 0 ≤ t ≤ T
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connects x to y and its rate function is

I[y(·)] =
1

2

∫ T

0
‖y′(t) +

1

2
(∇F )(y(t))‖2dt

=
1

2

∫ T

0
‖x′(t) − 1

2
(∇F )(x(t))‖2dt

=
1

2

∫ T

0
‖x′(t) +

1

2
(∇F )(x(t))‖2dt −

∫ T

0
〈(∇F )(x(t)), x′(t)〉dt

= [F (x(0)) − F (x(T ))]

= [F (y) − F (x)].

It follows then that for any y in the domain of attraction of x0

R(y) = V (x0, y) = F (y) − F (x0)

and the exit point is obtained by minimizing the potential F (y) on ∂G.


