
The simplest example is a system of noninteracting particles undergoing independent
motions. For instance we could have on T3, L ' ρ̄N3 particles all behaving like independent
Browninan Particles. If the initial configuration of the L particles is such that the empirical
distribution

ν0(dx) =
1
N3

∑
i

δxi

has a deterministic limit ρ0(x)dx, then the empirical distribution

νt(dx) =
1
N3

∑
i

δxi(t)

of the configuration at time t, has a deterministic limit ρ(t , x)dx as N → ∞ and ρ(t , x)
can be obtained from ρ0(x) by solving the heat equation

∂ρ

∂t
=

1
2

∆ρ

with the initial condition ρ(0 , x) = ρ0(x). The proof is an elementary law of large numbers
argument involving a calculation of two moments. Let f(x) be a continuous function on T
and let us calculate for

U =
1
N3

∑
i

f(xi(t))

the first two moments given the initial configuration (x1, · · · , xL)

E(U) =
1
N3

∑∫
T3

f(y)p(t , xi , y)dy

and an elementary calculation reveals that the conditional expectation converges to the
following constant.∫

T3

∫
T3

f(y)p(t , x , y)ρ0(x)dydx =
∫
T3

f(y)ρ(t , y)dy

The independence clearly provides a uniform upper bound of order N−3 for the conditional
variance that clearly goes to 0. Of course on T3 we could have had a process obtained
by rescaling a random walk on a large torus of size N . Then the hydrodynamic scaling
limit would be a consequence of central limit theorem for the scaling limit of a single
particle and the law of large numbers resulting from the averaging over a large number of
independently moving particles. The situation could be different if the particles interacted
with each other.

The next class of examples are called simple exclusion processes. They make sense on any
finite or countable set X and for us X will be either the integer lattice Zd in d-dimensions
or ZdN obtained from it as a quotient by considering each coordinate modulo N . At any
given time a subset of these lattice sites will be occupied by partcles, with atmost one
particle at each site. In other words some sites are empty while others are occupied with
one particle. The particles move randomly. Each particle waits for an exponential random
time and then tries to jump from the current site x to a new site y. The new site y is picked
randomly according to a probability distribution π(x , y). In particular

∑
y π(x , y) = 1 for

1
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every x. Of course a jump to y is not always possible. If the site is empty the jump is
possible and is carried out. If the site already has a particle the jump cannot be carried
out and the particle forgets about it and waits for another chance, i.e. waits for a new
exponential waiting time.

If we normalize so that all waiting times have mean 1, the generator of the process can
be written down as

(A f)(η) =
∑
x,y

η(x)(1− η(y))π(x , y)[f(ηx,y )− f(η)]

where η represents the configuration with η(x) = 1 if there is a particle at x and η(x) = 0
otherwise. For each configuration η and a pair of sites x, y the new configuration ηx,y is
defined by

ηx,y(z) =


η(y) if Z = x

η(x) if z = y

η(z) if z 6= x , y

We will be concerned mainly with the situation where the set X is Zd or ZdN , viewed
naturally as an Abelian group with π(x , y) being translation invariant and given by
π(x , y) = p(y − x) for some peobability distribution p. It is convenient to assume that p
has finite support. There are various possibilities.

p is symmetric i.e. p(z) = p(−z)

or more generally
p has mean zero i.e.

∑
z

zp(z) = 0

and finally ∑
z

z p(z) = m 6= 0

We shall first concentrate on the symmetric case. Let us look at the function

VJ(η) =
∑

J(x)η(x)

and compute

(AVJ)(η) =
∑
x,y

η(x)(1− η(y))p(y − x)(J(y)− J(x))

=
∑
x,y

η(x)p(y − x)(J(y)− J(x))

=
∑
x,y

η(x)[(P− I)J ](x)

= V(P−I)J(η)
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The space of linear functionals is left invariant by the generator. It is not difficult to see
that

Eη
[
VJ(η(t))

]
= VJ(t)(η)

where
J(t) = exp[t(P− I)]J

is the solution of
d

dt
J(t , x) = (P− I)J(t , x)

It is almost as if the interaction has no effect and in fact in the calculation of expectations
of ‘one particle’ functions it clearly does not. Let us start with a configuration on ZdN and
scale space by N and time by N2. The generator becomes N2A and the particles can
be visualized as moving in a lattice imbedded in the unit torus Td, with spacing 1

N , and
becoming dense as N →∞.

Let J be a smooth function on Td. We consider the functional

ξ(t) =
1
Nd

∑
x

J(
x

N
)ηt(x)

and we can write

ξ(t)− ξ(0) =
∫ t

0
VN (η(s))ds+MN (t)

where
VN (η) = (N2AVJ)(η) = VJN (η)

with

(JN )(θ) = N2
∑[

J(θ +
z

N
)− J(θ)

]
p(z)

' 1
2

(∆CJ)(θ)

for θ ∈ Td. Here ∆C refers to the Laplacian∑
i,j

Ci,j
∂2

∂xi∂xj

with the covariance matrix C given by

Ci,j =
∑
z

zizjp(z)

MN (t) is a martingale and a very elementary calculation yields

E

{
[MN (t)]2

}
≤ C tN−d

essentially completing the proof in this case. Technically the empirical distribution νN (t)
is viewed as a measure on Td and νN (·) is viewed as a stochastic process with values in
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the space M(Td) of nonnegative measures on Td. In the limit it lives on the set of weak
solutions of the heat equation

∂ρ

∂t
=

1
2

∆C ρ

and the uniqueness of such weak soultions for given initial density establishes the validity
of the hydrodynamic limit.

Let us make the problem slightly more complicated by adding a small bias. Let q(z) be
an odd function with q(−z) = −q(z) and we will modify the problem by making p depend
on N in the form

pN (z) = p(z) +
1
N
q(z)

Assuming that q is nonzero only when p is so, pN will be an admissible transition probability
for large enough N . A calculation yields that in the slightly modified model referred to as
weakly asymmetric simple exclusion model VN is given by

VN (η) ' VJN (η) +
1
Nd

∑
x

η(x)(1− ηx) < m ,∇J(x) >

with
m =

∑
z

z q(z)

If one thinks of ρ(t , θ) as the density of particles at the (macroscopic) time t and space θ
the first term clearly wants to have the limit∫

Td

1
2

(∆CJ)(θ)ρ(t , θ)dθ

It is not so clear what to do with the second term. The ‘invariant’ measures in this model
are the Bernoulli measures with various densities ρ and the ‘averaged’ version of the second
term should be ∫

Td
< m , (∇J)(θ) > ρ(t , θ)(1− ρ(t , θ)dθ

Replacing the linear heat equation by the nonlinear equation

∂ρ

∂t
=

1
2

∆Cρ−∇ ·mρ(1− ρ)

This requires justification that will be the content of our next lecture.

Let us now turn to the case where p has mean zero but is not symmetric. In this case

VN (η) = N2−d
∑
x,y

η(x)(1− η(y))p(y − x)[J(
y

N
)− J(

x

N
)]

and we get stuck at this point. If p is symmetric, as we saw, we gain a factor of N−2.
Otherwise the gain is only a factor of N−1 which is not enough. We seem to end up with
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N−d
∑
x

∑
y

η(x) <
1
2

[(∇J)(
x

N
) + (∇J)(

y

N
)] , N(1− η(y))(y − x)p(y − x) >

=
1

2Nd

∑
x

(∇J)(
x

N
)NΨx

where

Ψx = [η(x)
∑
z

(1− η(x+ z))z p(z) + (1− η(x))
∑
z

η(x− z)z p(z)]

= [−η(x)
∑
z

η(x+ z)z p(z) + (1− η(x))
∑
z

η(x− z)z p(z)]

= [
∑
z

η(x− z)z p(z)− η(x)
∑
z

(η(x+ z) + η(x− z))z p(z)]

= τxΨ0

with τx being the shift by x. The second sum is zero in the symmetric case and Ψ0 can
then be written as a ‘gradient’

Ψ0 =
∑
j

τejξj − ξj

where τej are shifts in the coordinate directions. This allows us to do summation by parts
and gain a factor of N−1. When this is not the case, we have a ‘nongradient’ model and
the hydrodynamic limit can no longer be established by simple averaging.

The important ingredient in the analysis of gradient models is the ability to do aver-
aging and replace quantities by their expected values calculated under various equlibrium
distributions. Suppose µN is a probability measure on the space ΩN of configurations η on
the periodic lattice ZdN . We wish to think of µN as being a Bernoulli measure with some
density ρ. The density ρ is not quite a constant, but a slowly varying function on function
on ZdN , and in fact a function of the macroscopic variable x

N . Let g = g(η) be a local
function depending on the configuration in some finite box around 0. By Ave` g we will
denote the averaging process over the block(cube) B` = {z : |zj | ≤ `; 1 ≤ j ≤ d} of side
2`+ 1

(Ave`g)(η) =
1

(2`+ 1)d
∑
z∈B`

g(τzη)

If g(η) = η(0) this produces the empirical density η̄`,0. For any local g we can calculate its
expected value with respect to the Bernoulli measure with density ρ and get

ĝ(ρ) = EPρ
[
g(η)

]
Averaging means, replacing (Ave`g)(η) by ĝ(η̄`,0) or more precisely showing that the

error

δN,` = EµN
[

1
Nd

∑
x

|(Ave`g)(τxη)− ĝ(η̄`,x)|
]
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goes to zero as N →∞ so long as `→∞ and `
N → 0. What property of the sequence µN

will allow us to make such a conclusion? Dirichlet Form. Given the density {f(η)} with

respect to the uniform distribution of a probability distribution µ on ZdN , the Dirichlet
form DN (µ) is the quantity

DN (µ) =
1

2Nd

∑
η

∑
x,y∈Zd

N
|x−y|=1

[
√
f(ηx,y)−

√
f(η)|2

Remark: One should think of the inner summation as being over all the nearest neighbor
bonds. The outer summation with the factor 1

2Nd
is integration with respect to the uniform

distribution on ΩN . Since f is a nonnegative L1 function, its square root will be natu-
rally an L2 function and we are really dealing with the Dirichlet form of

√
f . Theorem

(Averaging principle). If µN on ΩN is such that

DN (µN ) ≤ CNd−2

for some constant C independent of N , then for every local g

lim
ε→0

lim sup
N→∞

δN,εN = 0

Proof: The proof is carried out in two steps. First we show that

lim
`→∞

lim sup
N→∞

δN,` = 0

and then

lim
ε→0
`→∞

EµN
[

1
Nd

∑
x∈ZdN

|η̄`,x − η̄Nε,x|
]

= 0

Since ĝ(ρ) is a polynomial in ρ, the two steps together will suffice to prove the theorem.

Step 1:The details of the proof can be found in [KOV] we will only sketch it here. Suppose
B` is a block of size 2` + 1 and q`(η) is an assignment of probabilities for the 2(2`+1)d

possible configurations. We view the block non-periodically and we have (2`)d interior
nearest neighbor bonds. The Dirichlet form is given by

D`(q`) =
∑
x,y∈B`
|x−y|=1

|
√
q`(ηx,y)−

√
q`(η)|2

Given a probability distribution µN on ΩN , we denote its marginal on a block of size 2`+1
centered at x by ν`,N,x and by ν̄`,N we denote the average

ν̄`,N =
1
Nd

∑
x∈ZdN

ν`,N,x
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over all the sites x. If q`,N (η) are the individual probabilities a simple consequence of the
convexity of D(ν) in ν yields

D`(q`,N ) ≤ (
2`
N

)
dDN (µN ) ≤ (

2`
N

)
d
CNd−2 =

C(2`)d

N2

It follows that any possible limit q` of q`,N as N → ∞ has the property D`(q`) = 0.
Any probability distribution with D`(q`) = 0 is invariant under permutations and the
conditional distribution of occupied sites, given the total number of particles k, is uniform
over all possible subsets of cardinality k. If we denote this uniform distribution by λ`,k,
then

νl =
∑
k

λ`,kπν`(k)

Since λ`,k converges to the Bernoulli with density ρ, as k
(2`+1)d

→ ρ (uniformly in ρ) it
follows that

lim
`→∞

sup
ν`

Eν` [|Ave` g(η)− ĝ(Ave` η)|] = 0

This completes step 1.

Proof of Step 2: For step 2, we need only establish that the local density η̄`,x does not
fluctuate over small macroscopic length scales. This will follow from the estimate

lim sup
`→∞
ε→0

lim sup
N→∞

sup
|y|≤Nε

EµN
[

1
Nd

∑
x∈ZdN

|η̄`,x − η̄`,x+y|
]

= 0

If we take two blocks of size 2`+ 1 centeerd at x and x+ y there is no bond connecting x
and x+ y which are far from each other. We can introduce a Dirichlet form for this bond.

Dx,x+y(q) =
∑
η

|
√
q(ηx,x+y)−

√
q(η)|2

and this can be estimated, by writing the difference as a telescopic sum over exchanges
involving nearest neighbors and applying Schwartz’s inequlaity, interms of Dirichlet forms
for nearest neighbor bonds. If we denote by ν`,N,x,x+y the joint marginal over two widely
seperated blocks of size 2`+ 1 centered at x and x+ y, and by

ν̄`,N,y =
1
Nd

∑
x∈ZdN

ν`,N,x,x+y

the average over all rigid spatial translations of the pair of blocks

D`,0,y(ν̄`,N,y) ≤ C|y|2N−2 ≤ Cε2

It follows, by pure thought, (once ε→ 0, the two averages are essentially averages over two
halves of a combined system of 2(2`+ 1)d sites which is in equilibrium), that

lim sup
`→∞

lim sup
ε→0

lim sup
N→∞

sup
|y|≤Nε

EµN
[

1
Nd

∑
x∈ZdN

|η̄`,x − η̄`,x+y |
]

= 0



8

Because η̄Nε,x is not very different from the average Ave|y|≤Nε η̄`,x+y step 2 is essentially
complete.

Super Exponential Estimates: Let us denote by PN the measure corresponding to
the process on D[[0, T ]; ΩN ] starting from some initial distribution. We want to replace
additive functionals of the form∫ T

0

1
Nd

∑
x

J(
x

N
)g((τxη)(s))ds

by ∫ T

0

1
Nd

∑
x

J(
x

N
)ĝ(η̄Nε,x)(s))ds

and for the difference

FN =
∫ T

0

1
Nd

∑
x

J(
x

N
)g((τxη)(s))ds−

∫ T

0

1
Nd

∑
x

J(
x

N
)ĝ(η̄Nε,x)(s))ds

we obtain the following superexponential bound.

Theorem: For any δ > 0

lim sup
ε→0

lim sup
N→∞

1
Nd

logPN [|FN | ≥ δ ] = −∞

Proof: It suffices to prove that for any λ > 0

lim sup
ε→0

lim sup
N→∞

1
Nd

EPN
[

exp
[
λNdFN

]]
= 0

By Hölder inequality we can reduce it to equilibrium and, it is sufficient to prove

lim sup
ε→0

lim sup
N→∞

1
Nd

EP̄N
[

exp
[
λNdFN

]]
= 0

where P̄N is initializes to start from Bernoulli with density 1
2 . By Feynamn-Kac it is

reduced to an estimation of an eigen value. More precisely we only need to show that for
every λ > 0

lim sup
ε→0

lim sup
N→∞

1
Nd

[
sup
ν
Eν
[
NdλFN

]
− cN2DN (ν)

]
= 0

or

lim sup
ε→0

lim sup
N→∞

[
sup
ν
Eν
[
λFN

]
− c

Nd−2
DN (ν)

]
= 0

The apperance of the constant c is because the actual Dirichlet form involves p(·) and if we
assume irreducibility we can get a bound. The factor N2 is due to the speed up of time.
If FN is bounded by A, we will only see ν with

DN (ν) ≤ λA

c
Nd−2 = CNd−2

We are done due to the earlier result.
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Application 1: Weak asymmetry. If QN is the process with weak asymmetry then

RN =
dQN
dPN

can be explicitly calculated by Girsanov type formula and

EPN
[
RpN
]
≤ exp

[
CNd

]
Therefore QN inherits the super exponential bounds. This establishes the hydrodynamic
limit for weakly asymmetric perturbations.

In fact if we perturb p(·) by a skew symmetric q
N with q of the form q(t, xN , ·) so that

the generator looks like

N2
∑
x,y

η(x)(1− η(y))p(y − x)[f(ηx,y)− f(η)]

+N
∑
x,y

η(x)(1− η(y))q(t,
x

N
, y − x)[f(ηx,y)− f(η)]

and the means are calculated as

b(t, θ) =
∑
z

z q(t, θ, z),

then the hydrodynamic limit is
∂ρ

∂t
=

1
2
∇ · C∇ρ−∇ · bρ(1− ρ)

Application 2: Large Deviations. The Entropy cost of the perturbation is calculated
easily by the use of Girsanov’s formula

H(QN , PN ) = EQN
[ ∫ T

0

∑
x,y

[
ηt(x)(1− ηt(y))cN (t,

x

N
, y − x)

]
dt

]
where c is the relative entropy of one Poisson distribution to another

CN (t, θ, z) = (N2p(z) +Nq(t, θ, z)) log
N2p(z) +Nq(t, θ, z)

N2p(z)
− (N2p(z) +Nq(t, θ, z)) +N2p(z)

' q2(t, θ, z)
2p(z)

It is clearly in our interest to minimize

1
2

∑
z

q2(t, θ, z)
p(z)

subject to ∑
z

z q(t, θ, z) = b
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and the minimum is seen to be
1
2
< b ,C−1 b >

so that the minimal entropy cost HN for the large deviation of the empirical density from
the solution of the normal hydrodynamic limiting equation

∂ρ

∂t
=

1
2
∇ · C∇ρ (3.1)

to the solution of
∂ρ

∂t
=

1
2
∇ · C∇ρ−∇ · bρ(1− ρ) (3.2)

is
HN ' NdE(b)

where

E(b) =
1
2
Nd

∫ T

0

∫
Td
ρ(t , θ)(1− ρ(t , θ)) < b(t, θ) , C−1b(t, θ) > dtdθ (3.3)

We have now a large deviation lower bound for a ρ not satisfying (3.1). Find the class
B(ρ) of b’s that satisfy (3.2) and optimize E(b) given in (3.3) over b ∈ B(ρ) . In other words
we have established the large deviation lower bound with the rate function

I(ρ) = inf
b∈B(ρ)

E(b) (3.4)

We now work on the upper bound. We start with a class of exponential martingales. For
any smooth test function J(t, θ)

EPN
[

exp
[∑

x

J(T,
x

N
) ηT (x)−

∑
x

J(0,
x

N
) η0(x)−

∫ T

0

∑
x

Jt(t,
x

N
)ηt(x)dt

−N2

∫ T

0

∑
x,y

p(y − x)ηt(x)(1− ηt(y))
[

exp[J(t,
y

N
)− J(t,

x

N
)
]
− 1
]]
dt

]
= 1

The quantity

N2
∑
x,y

p(y − x)ηt(x)(1− ηt(y))
[

exp[J(t,
y

N
)− J(t,

x

N
)
]
− 1
]

simplifies to
1
2

∑
x

(∇ · C∇J)(t,
x

N
)ηt(x) +

1
2

∑
x,y

p(y − x)ηt(x)(1− ηt(y)) | < y − x , (∇J)(t,
x

N
) > |2

Because of super exponential bounds we can effectively average the second term, even for
large deviation purposes and interms of the density ρ, the expression looks like

Nd

[
1
2

∫ T

0

∫
Td
∇ · C∇J(t, θ)ρ(t, θ)dtdθ

+
1
2

∫ T

0

∫
Td

< ∇J(t, θ), C∇J(t, θ) > ρ(t, θ)(1− ρ(t, θ))dtdθ
]
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Formally we are looking at

EPN
[

exp
[
NdFN

]]
= 1

where

FN = FN,J(ρ(·, ·))

'
∫
Zd
J(T, θ)ρ(T, θ)dθ −

∫
Zd
J(0, θ)ρ(0, θ)dθ −

∫ T

0

∫
Zd
Jt(t, θ)ρ(t, θ)dtdθ

− 1
2

∫ T

0

∫
Td
∇ · C∇J(t, θ)ρ(t, θ)dtdθ

− 1
2

∫ T

0

∫
Td

< ∇J(t, θ), C∇J(t, θ) > ρ(t, θ)(1− ρ(t, θ))dtdθ

By standard large deviation theory one gets an upper bound with a rate function

sup
J
FN,J(ρ(·, ·))

that is easily seen to equal (3.4).


