
1. Empirical Processes.

Let us return to the situation of a Markov chain on a finite state space X, having π(x, y)
as the probability of transition from the state x to the state y. We saw before that

lim
n→∞

1
n

logEx
[

exp[V (X1) + V (X2) + · · ·+ V (Xn)]
]

= λ(V )

exists and is independent of x. More over the limit λ(V ) is given by a variational formula

λ(V ) = sup
q∈P

[∑
x

V (x)q(x)− I(q)
]

where q = {q(x)} is a probability distribution on X, P is the space of such probability
distributions and I(q) is the large deviation rate function for the distibution Qn on P, of
the empirical distribution

pn(x) =
1
n

n∑
i=1

χx(Xi).

We want to generalize this to study limits of the form

λ2(V ) = lim
n→∞

1
n

logEx
[

exp[V (X1, X2) + V (X2, X3) + · · ·+ V (Xn, Xn+1)]
]
.

To this end we construct a Markov Process on a new state space X(2) = X ×X where the
transitions from (x1, x2) to (y1, y2) are possible only if x2 = y1 and the probability of the
transition is π(x2, y2). In other words we carry a memory of one previous state as part of
the current state. Although the transition probabilities on this enlarged state space are
not all positive, they all become positive after two iterations and this is sufficient to extend
the previous analysis to this case. If q2(·, ·) is a probability on X(2), the rate function
I2(q2) is finite if and only if

∑
x q2(x, a) =

∑
x q2(a, x) for all a, i.e the two one dimensional

marginals of q2 are identical. For such a q2 we can write q2(x, y) = α(x)β(y|x) interms of
a marginal and a conditional. Then a calculation shows that

I2(q2) =
∑
x

α(x)H(x)

where H is the relative entropy

H(x) =
∑
y

β(y|x) log
β(y|x)
π(x, y)

.

Now the rate function is more explicit than before and the connection is through the
contraction formula

I(q) = inf
q2∈Pq

I2(q2)
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where Pq are those probability distributions X ×X that have both marginals equal to the
given distibution q on X. This can be extended to consideration of limits of the form

λk(V ) = lim
n→∞

1
n

logEx
[

exp[V (X1, X2, · · · , Xk) + V (X2, X3, · · · , Xk+1)

+ · · ·V (Xn, Xn+1, · · · , Xn+k−1)]
]

by means of a rate functional Ik(qk) on probability distributions qk on X(k) = X×X · · ·×X
that is finite only for those qk that have the same projection on the first k− 1 components
as the last k − 1. The qk is written as

qk(x1, x2, · · · , xk) = α(x1, x2, · · · , xk−1)β(xk|x1, x2, · · · , xk−1)

and
Ik(qk) =

∑
x1,x2,··· ,xk−1

α(x1, x2, · · · , xk−1)H(x1, x2, · · · , xk−1)

where

H(x1, x2, · · · , xk−1) =
∑
xk

β(xk|x1, x2, · · · , xk−1) log
β(xk|x1, x2, · · · , xk−1)

π(xk−1, xk)

is the relative entropy. The final step is to combine it all with a rate function I(µ) on the
space M of stationary X-valued stochastic processes defined by

I(µ) = Eµ[H(ω)]

where

H(ω) =
∑
x

β(x|ω) log
β(x|ω)

π(X0(ω), x)

is the relative entropy of the conditional distribution

β(x|ω) = µ[X1 = x|X0, X−1, · · · ]

of the process at time 1 given the past upto time 0 with respect to the Markovian conditional
distribution π(X0(ω), x) where X0(ω) is the 0-th coordinate that is part of the past. If we
denote by Πk the projection from Ω→ X(k), as well as the induced map from measures on
Ω to measures on X(k)

Ik(qk) = inf
µ:Πkµ=qk

I(µ).

Remark: One of the applications of such a general formula is to the study of limits of the

type

lim
n→∞

1
n

logEx

[
exp

n∑
i,j=1

[
ρ|i−j|V (Xi, Xj)

]]
for a symmetric function V on X ×X.
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Proof. Let us do the independent case. {Xi} are i.i.d with a common distribution π(dx)
We begin by estimating

1
n

logEP [exp[
n∑
i=1

V (Xi, . . . , Xi+k−1]]

for an any bounded continuous function V (x1, x2, . . . , xk) : Xk → R where k is any positive
integer. Replace n = nk

exp[
nk∑
i=1

V (Xi, . . . , Xi+l−1] = exp[
k∑
j=1

n∑
i=1

V (X(i−1)k+j , X(i−1)k+j+1, . . . , Xik+j−1)]

≤ 1
k

k∑
j=1

exp[k
n∑
i=1

V (X(i−1)k+j , X(i−1)k+j+1, . . . , Xik+j−1)]

EP [exp[
nk∑
i=1

V (Xi, . . . , Xi+l−1]] ≤ EP [exp[k
n∑
i=1

V (X(i−1)k+j , X(i−1)k+j+1, . . . , Xik+j−1)]]

=
[
EP [exp[kV (X1, . . . , Xk)]]

]n

lim sup
n→∞

1
n

logEP [exp[
n∑
i=1

V (Xi, . . . , Xi+k−1)]] ≤ 1
k

logEP [exp[kV (X1, . . . , Xk)]]

If X1, X2, . . . , Xn is a realization, we extend it periodically both sides to get a periodic
random infinite sequence

ωn = (. . . , X1, X2, . . . , Xn, X1, X2, . . . , Xn, X1, . . . , . . .)

It defines a periodic orbit of period n and the orbital measure Rn = 1
n

∑n−1
j=0 δT jωn

defines
a random stationary process that we call the empirical process. Its marginals are the
empirical distributions of {Xi}, {Xi, Xi+1}, . . . , {Xi, Xi+1, . . . Xi+k−1} etc except for the
effect of periodization at the edges which is not significant if k is fixed and n is large. We
now have bounds

lim sup
N→∞

1
n
EP [exp[n

∫
V (x1, x2, . . . , xk)dRn]] ≤ 1

k
logEP [exp[kV (X1, . . . , Xk)]]
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It provides a large deviation upper bound with rate function

IP (R) = sup
k,V

[ ∫
V (x1, x2, . . . , xk)dR−

1
k

logEP [exp[kV (X1, . . . , Xk)]]
]

= sup
k,V

[
1
k

∫
V (x1, x2, . . . , xk)dR−

1
k

logEP [exp[V (X1, . . . , Xk)]]
]

= sup
k,V

1
k

[ ∫
V (x1, x2, . . . , xk)dR− logEP [exp[V (X1, . . . , Xk)]]

]
= sup

k

1
k

[ ∫
V (x1, x2, . . . , xk)dR− logEP [exp[V (X1, . . . , Xk)]]

]
= sup

k

1
k
H(Rk|Pk)

=
∫
H(Rω(dx);α)dR

where Rω is the conditional distribution of X1 given the past and α is the common distri-
bution of, {Xi} i.e. the one dimensional marginal of P . �

The last step follows from the following observation.

H(Rn|Pn) = E[H(R1|α)] +H(R2, ω)|α) +H(Rn, ω)|α)]

where Rj,ω for j ≥ 2 is the conditional distribution of xj under R given (x1, . . . , xj−1).
E[H(Rn,ω)] is nondecreasing and its limit is easily seen to be E[H(Rω|α)] by stationarity,
martingale convergence theorem. Stationarity reduces the calculation to showing

lim
n→∞

ER[H(R[−n,0],ω(dx1)|α)] =
∫
H(Rω(dx);α)dR

The measures R[−n,0],ω(dx1) converge to Rω(dx) by the martingale convergence theorem.
The entropy is a convex lower semi continuous functional. Therefore almost surely

lim inf
n→∞

H(R[−n,0],ω(dx1)|α) ≥ H(Rω(dx)|α)

and by Fatou’s lemma

lim inf
n→∞

ER[H(R[−n,0],ω(dx1)|α)] ≥
∫
H(Rω(dx)|α)dR
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On the other hand by the properties of entropy

ER[H(R[−n,0],ω(dx1)|α)] = sup
V=V (x−n,...,x0,x1)

[
ER[V (x−n, . . . , x0, x1)

− logER
[ ∫

exp[V (x−n, . . . , x0, x1)]α(dx1)
]]

≤ sup
V

[
ER[V (ω, x1)]− logER

[ ∫
exp[V (ω, x1)]α(dx1)

]]
=
∫
H(Rω(dx)|α)dR

Now we turn to the proof of the lower bound. We first note that entropy IP (R) is linear
in R. The conditional probability Rω(dx1) can be chosen universally. The is a bit of
soft, but correct reasoning. The ergodic measures live on mutually disjoint subsets. So
define Rω differently on different sets, but call it the same. It then works for convex
combinations which is every thing. Therefore it is enough to prove the lower bound for
R that is ergodic. Neighborhoods are defined by finite dimensional distributions. Let us
say we want k dimensional distribution of the empirical process to be close to that of R.
There is a (k− 1) Markov process Rk with k dimensional distribution matching that of R.
IP (Rk) ≤ IP (R). It has a conditional density rk(xk|x1, x2, . . . , xk−1) with respect to α and
if we tilt by exp

∑n−1
j=0 log rk(xj+k|x1, x2, . . . , xj+k−1) we get the lower bound.


