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1. INTRODUCTION

The theory of large deviations deals with rates at which probabilities of certain events
decay as a natural parameter in the problem varies. It is best to think of a specific example
to clarify the idea. Let us suppose that we have n independent and identically distributed
random variables {X;} having mean zero and variance one with a common distribution y.
The distribution of X, = % converges to the degenerate distribution at 0, while
Ly = % has a limiting normal distribution according to the Central Limit Theorem.
In particular

1 0 42
1.1 lim P[Z, >/{] = — e 2dx
(1.1) Jm Pz, > 0= — |
While the convergence is uniform in ¢ it does not say much if £ is large. A natural question

to ask is does the ratio
P|Z, >/

2
<
2 dx

\/%7 Je
tend to 1 even when ¢ — co? It depends on how rapidly £ is getting large. If £ << /n it
holds under suitable conditions. But if £ ~ \/n it clearly does not. For instance if {X;} are
bounded by a constant C, and ¢ > C+/n, P[Z, > {] = 0 while the Gaussian probability is
not. Large deviations are when £ ~ y/n. When ¢ << \/n they are referred to as ”moderate
deviations”. While moderate deviations are refinements of the Central Limit Theorem,
large deviations are different. It is better to think of them as estimating the probability

pn(l) = P X1+ -+ X, >nl] = P[X,, >/

It is expected that the probability decays exponentially. In the Gaussian case it is clear
that

na?

o0 © n.2
pu(f) = \/\/2% /{Z e = o~ " o(n) — p—nI(0)+o(n)

The function I(¢) = % reflects the fact that the the common distribution of {X;} was
Gaussian to begin with.

Following Cramer, let us take for the common distribution of our random variables
X1, Xs,-++, X, an arbitrary distribution u. We shall try to estimate P[X, € A] where
A = {z: x> {} for some ¢ > m, m being the mean of the distribution x. Under suitable
assumptions p,,(A) should again decay exponentially rapidly in n as n — oo, and our goal
is to find the precise exponential constant. In other words we want to calculate

lim 1 log ju,(A) = —1,,(¢)
n—oo n

as explicitly as possible. The attractive feature of the large deviation theory is that such
objects can be readily computed. If we denote the sum by S, = > ; X; then

un(A) = Pr[S,, > nf]



LARGE DEVIATIONS 3

can be estimated by the standard Tchebechev type estimate
pn(A) < e " Blexp(0S,]}

with any # > 0. Denoting the moment generating function of the underlying distribution
p by

M(9) = / P dp
and its logarithm by

¥(0) = log M(6)
we obtain the obvious inequality

pn(A) < e "M (9)]"

and by taking logarithms on both sides and dividing by n

% log fin(A) < —0 £+ (6).

Since the above inequality is valid for every 6 > 0 we should optimize and get
1
—log fin(A) < —sup [0 —(0)].
n 6>0

By an application of Jensen’s inequality we can see that if 8 < 0, then ¥(0) > m6 > (6.
Because 0 is always a trivial lower bound replacing supys [0 £ — v(6)] by supy [0 £ — (0)]
does not increase its value. Therefore we have

1
(1.2) —log jin(4) < — sup [06—(0)].
It is in fact more convenient to introduce the conjugate function

(1.3) h(l) = Sup 06— 4(0)]

which is seen to be a nonnegative convex function of ¢ with a minimum value of 0 at
the mean ¢ = m. From the convexity we see that h(¢) is non-increasing for £ < m and
nondecreasing for ¢ > m. We can now rewrite our upper bound as

logpin(4) < —h(0)

for £ > m. A similar statement is valid for the sets of the form A = {z : x < ¢} with
¢ < m. We shall now prove that the upper bounds that we obtained are optimal. To do
this we need effective lower bounds. Let us first assume that £ = m. In this case we know
by central limit theorem that

lim p,(A) =

n—oo

N | =

and clearly it follows that

1
lim inf —log p1n,(A) > 0 = —h(m).
n

n—oo
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To do the general case let us assume that the distribution u does not live on any proper
subinterval of (—oo,00). Then 1(-) grows super-linearly at oo and the supremum in
supg[0f — ¢ (0)] is attained at some value 6, for §. Equating the derivative to 0,

M'(6y) 1
1.4 ¢ =1/ (0) = = /eGOId z).
(14) W0 = S0 = 1y <@
If we now define a new probability distribution y’ by the relation
dul 690:17
1.5 —(z) =

then u' has ¢ for its expected value. If we denote be u], the distribution of the mean of
the n random variables under the assumption that their common distribution is ' rather
than p, an elemenatary calculation yields

) = [ (M) i ().
To get a lower bound let us replace A by As = {z: ¢ <z < {4+ 4} for some 6 > 0. Then
pn(A) > pin(As) > [M(60)e™ )1 (Ag).

Again applying the central limit theorem, but now to u,,we see that u/,(As) — %, and
taking logarithms we get

nnniiogf%log 1 (A) = $(00) — (€ + 6).
Since § > 0 was arbitrary we can let it go to 0 and obtain
timinf Lo i (4) > (0) 0 £ = ~h(c).
A similar proof works for intervals of the form A = {x : x < ¢} as well. We have therefore

calculated the precise exponential decay rate of the relevant probabilities.

Remark 1.1. This way of computing the probability of a rare event by changing the
underlying model to one where the rare event is no longer rare and using the explicit form
of the Radon-Nikodym derivative to estimate the probabiliy goes back to Cramér-Lundberg
in the 1930’s. The problem is to estimate

(1.6) P[Slip X(t) = 4 = q(0)

where X (t) = > ., & —mt is all the claims paid up to time ¢ less the premiums collected
reflecting the net total loss up to time ¢. £ is the initial capital of an insurance company.
The claims follow a compound Poisson process with the Lévy-Khinitchine representation

(1.7) log Elexpl0 X (£)]] = ¢ log 1:(6) — m/(e“ —D)dF(z) - mt

A is the claims rate, F' is the distribution of the individual claim amounts and m is the
rate at which premium is being collected. It is assumed that the company is profitable, i.e.
A [z dF(z) < m. If £ is large the probability of ever running out of cash should be small.
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The problem is to estimate g(¢) for large ¢. First consider the imbedded random walk, which
is the net out flow of cash after each claim is paid. S,+1 = Sp+E&nt1 — Tne1m = Sy + Yot1.
&n+1 is the amount of the new claim and 7,41 is the gap between the claims during which
a premium of m 7,41 was collected.The idea of ”tilting” is to consider 6y > 0 so that

E[e%Y] = E[%Em7)] — Blefof| Elem007) — 1

Solve for
A+ m90

M(6) = —
Such 0y # 0 exists because E[Y] < 0. Tilt so that the (£,7) is now distributed as
eove=tomqp (y)e *dr The tilted process @ will now have net positive outflow. We have
made the claims more frequent and more expensive, while keeping the premium the same.
It will run out of cash. Let oy be the overshoot, i.e. shortfall when that happens. For the
tilted process E[e~%Y] = 1.

q(g) _ EQ[e—GO(f-‘rUe)] —_ e—@ozEQ[e—Goo'g]

EQ[e=%7¢] has a limit as £ — oo that is calculated by the renewal theorem.

Remark 1.2. If the underlying distribution were the standard Gaussian then we see that
he) =%

Remark 1.3. One should really think of h(¢) as giving the ”local” decay rate of the
probability at or near ”¢”. Because a" +b" < 2[max(a, b)]" and the factor 2 leaves no trace
when we take logarithms and divide by n, the global decay rate is really the worst local
decay rate. The correct form of the result should state
1 :
Aim —log pn(A) = — inf h(z).

Using the monotonicity of h on either side of m one can see that this is indeed correct for
sets of the form A = (—o0,¢) or (¢,00). In fact the upper bound

lim supllog tn(A) < — inf h(zx)
n—oo N €A

is easily seen to be valid for more or less any set A. Just consider the smallest set of the
form (—o0,a] U [b,00), with @ < m < b that contains A. While a and b may not be in A
they clearly belong to A, the closure of A. If we use the continuity of h we see that A can
be arbitrary. If we do not want to use the continuity of A then it is surely true for closed
sets. The lower bound is more of a problem. In the Gaussian case if A is a set of Lebesgue
measure zero, then pu,(A) = 0 for all n and the lower bound clearly does not hold in this
case. Or if we take the coin tossing or the Binomial case, if A contains only irrationals, we
are again out of luck. We can see that the proof we gave works if the point £ is an interior
point of A. Therefore it is natural to assume for the lower bound that A is an open set
just as it is natural to assume that A is closed for the upper bound.
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Exercise 1.

For the coin tossing where p is the discrete distribution with masses p and ¢ = 1 —p
at 1 and 0 respectively calculate explicitly the function h(x). In this case our proof of the
lower bound may not be valid because p lives on a bounded interval. Provide two proofs
for the lower bound, one by explicit combinatorial calculation and Stirling’s formula and
the other by an argument that extends our proof to the general case.

Exercise 2.

Extend the result to the case where X1, Xo,--- , X, take values in R? with a common
distribution p on R?. Tchebechev will give estimates of probabilities for halfspaces and for
a ball we can try to get the halfspace that gives the optimal estimate. If the ball is small
this is OK. A compact set is then covered by a finite number of small balls and a closed set
is approximated by closed bounded sets by cutting it off. This will give the upper bound
for closed sets and the lower bound for open sets presents no additional difficulties in the
multidimensional case.

Exercise 3.

Let us look at the special case of p on R? that has probabilities 7,2, - - - , 74, (with
> ;T = 1), respectively at the unit vectors in the coordinate directions ey, es,--- ,eq.
Calculate explicitly the rate function h(z) in this case. Is there a way of recovering from
this example the one dimensional result for a general discrete p with d mass points?

Exercise 4.
If we replace the compound Poisson process by Brownian motion with a positive drift
x(t) = B(t) + mt, m > 0, then

q(f) = P[%ggx(t) )

References:

1. H. Cramér; Collective Risk Theory, Stockholm, 1955

2. H. Cramér; Sur un nouveau théoreme limite de la théorie des probabilités; Actualités
Scientifiques, Paris, 1938

2. GENERAL PRINCIPLES

In this section we will develop certain basic principles that govern the theory of large
deviations. We will be working for the most part on Polish (i.e. complete separable metric)
spaces. Let X be such a space. A function I(-) : X — [0, oo], will be called a (proper) rate
function if it is lower semicontinuous and the level sets Ky = {z : I(z) < £} are compact in
X for every ¢ < co. Let P, be a sequence of probability distributions on X. We say that
P, satiesfies the large deviation principle on X with rate function I(-) if the following two
statements hold. For every closed set C' C X,

1
limsup — log P,(C) < — inf I(x)

n—oo N zeC
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and for every open set G C X,

1
liminf —log P,,(G) > — inf [
it los Fa(G) 2 = g 1)
Remark 2.1. The value of +oc is allowed for the function I(-). All the infima are effectively
taken only on the set where I(-) < co.

Remark 2.2. The examples of the previous section are instances where the LDP is valid.
One should check that the assumption of compact level sets holds in those cases, and this
verification is left as an exercise.

Remark 2.3. Under our assumptions the infimum inf, I(x) is clearly attained and since
P,(X) = 1, this infimum has to be 0. If we define Ky = {x : I(x) = 0}, then Kj is a
compact set and the sequence P, is tight with any limit point @) of the sequence satisfying
Q(Kp) = 1. In particular if K is a single point g of X, then P,, = d,,, i.e. P, converges
weakly to the distribution degenerate at the point xg of X.

There are certain general properties that are easy to prove.

Theorem 2.4. Suppose P, is a sequence that satisfies an LDP on X with respect to a
proper rate function 1(:). Then for any { < oo there exists a compact set D C X such
that

P, (D" >1—em*
for every n.
Proof. Let us consider the compact level set A = {z : I(z) < £+2}. From the compactness
of A? it follows that for each k, it can be covered by a finite number of open balls of radius

1. The union, which we will denote by Uy, is an open set and I(z) > (¢ + 2) on the closed
set Ug. By the LDP, for every &,

1
limsup — log P, (A%) < —(£ + 2).
n—oo N

In particular there is an ng = ng(k) such that for n > ng
Pn(Ai) < efn(€+1).

We can assume without loss of generality that ng(k) > k for every k > 1. We then have
for n > ng
P, (AS) < e Femt,

Forj =1,2,--- ,no(k), we can find compact sets By, 1, Bi.2, - - , B, such that PJ(BEJ) <
e~ke=7* for every j. Let us define E = Ng[Ax U (U; By ;)] E is clearly totally bounded and
Pn(EC) < [Zefk]efné < efné

k>1
We are done. 0
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Remark 2.5. The conclusion of the theorem which is similar in spirit to Prohorov’s tight-
ness condition in the context of weak convergence will be caled superexponential tightness.

There are some elementary relationships where the validity of LDP in one context implies
the same in other related situations. We shall develop a couple of them.

Theorem 2.6. Suppose P, and Q,, are two sequences on two spaces X andY satisfying the
LDP with rate functions I(-) and J(-) respectively. Then the sequence of product measures
R, =P, x Qp on X XY satisfies an LDP with the rate function K(z,y) = I(x) + J(y).

Proof. The proof is typical of large deviation arguments and we will go through it once for
the record.

Step 1. Let us pick a point z = (z,y) in Z = X x Y. Let € > 0 be given. We wish to
show that there exists an open set N = IV, . containing z such that

1
limsup —log R, (N) < —K(z) +e.

n—oo N

Let us find an open set Uy in X such that I(z’) > I(z) — e for all z € Uy. This is possible
by the lower semicontinuity of I(-). By general separation theorems in a metric space we
can find an open set Us such that x € Us C Uy C U;. By the LDP of the sequence P,

1 1 _ 1
lim sup — log P,,(Us) < limsup — log P, (Us) < — inf I(2') < —I(z) + =e.
n—oo N n—oo N z'eUsz 2
We can repeat a similar construction around y in Y to get
1 1 _ 1
limsup —log Qn(V2) < limsup —log F,(V2) < — inf J(y') < —J(y) + e

n—oo N n—oo N y' eV

for some open sets Vi,Va with y € Vo C Vo C Vi. If we take N = Uy x V, as the
neighborhood of z = (z,y) we are done.

Step 2. Let D C Z = X XY be a compact set. Let € > 0 be given. We will show that for
some neighborhood D, of D

1
limsup — log R, (D¢) < — inf K(z) + €.

n—oo N z€D
We know from step 1. that for each z € D there is a neighborhood N, such that

1

limsup —log R, (N,) < —K(z) + e < — inf K(z) +e.
n—oo N zeD

From the open covering {N.} of D we extract a finite subcover {N; : 1 < j <k} and if we
take D, = U;Nj, then

Ry (De) < ZRn(Nj) < k sup R, (N;).
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Since k leaves no trace after taking logarithms, dividing by n and passing to the limit we
get
. 1 .
IITILILSOlip - log R,,(De) < — Zlgg K(z)+e.
In particular because ¢ > 0 is arbitrary we get
1
limsup — log R, (D) < — inf K(z).

n—oo N zeD

Step 3. From the superexponential tightness, for any given ¢ there are compact sets A°
and B’ in X and Y respectively such that P,([A%]°) < e™™¢ and P,([B‘]¢) < e "% If we
define the compact set C* C Z by C* = A’ x B then R, ([C?]¢) < 2e~™¢. We can complete
the proof of the theorem by writing any closed set C' as the union C' = [CNCYU[CN(C)].
An easy calculation yields
1
limsup — log R,,(C) < max(— inf K(z),—¢) < max(— inf K(z),—¢)
n—oo M z€C*t zeC
and we can let £ — oo to obtain the upper bound for arbitrary closed sets.

Step 4. The lower bound a much simpler. We need to prove only that if z € Z is arbitrary
and NV is a neighborhood of z in Z, then

liminfllog R, (N) > —1(z).
n—oo n

Since any neighborhood of z contains a product U x V of neighborhoods U and V' the lower
bound for R,, follows easily from the lower bounds in the LDP for P, and Q,,. ]

The next result has to do with the behavior of LDP under continuous mapping from one
space to another and is referred to as the ”Contraction Principle”

Theorem 2.7. If P, satisfies an LDP on X with a rate function I(-), and F' is a continuous
mapping from the Polish spacs X to another Polish space Y, then the family Q,, = P, F~!
satisfies an LDP on'Y with a rate function J(-) given by

= inf I(z).
Jy) = ot (@)

Proof. Let C CY be closed. Then D = F~1C = {y: F(x) € C} is a closed subset of X.

1 1
lim sup — log @,,(C) = limsup — log P, (D)
n—oo T n—oo N
< _ i
=
=—inf inf I(z)
yeC x:F(z)=y

— —inf J
Jnf (v)
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The lower bound is proved just as easily from the definition

lim inf 1 log @, (U) = liminf 1 log P, (V)
n

n—oo n—oo M

> — inf [
> = Inf I(z)

=—inf inf I(z)
yeU z:F(z)=y

— —inf
;gUJ(y)

where V = F~1U C X is open corresponding to the open set U C Y. O

If we want to consider the behavior of integrals of the form

1
an = / " @y, (z)
0

where du,(z) = e dx It is clear that the contribution comes mostly from the point
where F'(z) — I(z) achieves its maximum. In fact under mild conditions it is easy to see
that

—nl(x)

lim ~ log a, = sup[F(x) — I(z)].

n—oo n T

This essentially remains true under LDP.

Theorem 2.8. Assume that P, satisfies an LDP with rate function I(-) on X. Suppose
that F(-) is a bounded continuous function on X, then

lim ~ log ay = sup|F(z) — I(z)]

n—oo N P

where
an, :/ @ ap, (z).
X

Proof. The basic idea of the proof is that the sum of a finite number of exponentials grows
like the largest of them and if they are all nonnegative then there is no chance of any
cancellation.

Step 1. Let € > 0 be given, For every z € X, there is a neighborhood N, such that,
F(2") < F(z) +€on N, and I(2") > I(z) — € on the closure N, of N,. We have here used
the lower semicontinuity of I(-) and the continuity, (in fact only the upper semicontinuity)
of F(-). If we denote by

an(A) = / "P@) 4P, ()
A
we have shown that for any z € X, there is a neighborhood N, of x, such that,
an(Ny) < "F@rdp (N) < nF@+p (V)
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and by LDP
1
lim sup — log an(Nz) < [F(z) — I(x)] + 2e.

n—oo T
Step 2. By a standard compactness argument for any compact K C X,

1
limsup — log a, (K) < sup[F(z) — I(z)] + 2e.
n x

n—oo

Step 3. As for the contribution from the complement of a compact set by superexponential
tightness for any £ < oo there exist a compact set Ky such that

Po(K§) < e ™t

and if F'is bounded by a constant M, the contribution from K7 can be estimated by

1
lim sup — log a, (K§) < [M — /).

n—oo N

Putting the two pieces together we get

1 1
lim sup — log a,, = limsup — log a,,(X) < max(M — £,sup[F(x) — I(x)] + 2¢).
n n T

n—oo n—oo

If we let € — 0 and ¢ — oo we are done.

Step 4. The lower bound is elementary. Let x € X be arbitrary. By the continuity of
F(-), (in fact lower semicontinuity at this time) F'(z') > F(z) — € in some neighborhood
N, of z, and
ap = an(X) > an(Ny) > e"[F(x)_dPn(Nm).
By taking logarithms, dividing by n and letting n — oo we get
lim inf ! loga, > [F(z) — I(z)] —e.
n—oo N

We let € — 0, and take the supremum over the points of x € X to get our result. ]

Remark 2.9. We have used only the upper semicontinuity of F' for the upper bound and
the lower semicontinuity of F' for the lower bound. It is often necessary to weaken the
regularity assumptions on F' and this has to be done with care. More on this later when
we start applying the theory to specific circumstances.

Remark 2.10. The boundedness of F' is only needed to derive the upper bound. The
lower bound is purely local. For unbounded F' we could surely try our luck with truncation
and try to estimate the errors. With some control this can be done.

Finally we end the section by transfering the LDP from P, to @, where @, is defined
by
B fA e”F(“)dPn(:U)
= fX 6nF(l“)dPn(m)

Qn(A)
for Borel subsets A C X.
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Theorem 2.11. If P, satisfies an LDP with rate function I(-) and F is a bounded con-
tinuous function on X, then Q. defined above satisfies an LDP on X as well with the new
rate function J(-) given by J(x) = sup,ex[F(z) — I(z)] — [F(z) — I(z)].

Proof. The proof is essentially repeating the arguments of Theorem 4. Let us remark that
in the notation of Theorem 4, along the lines of the proof there one can establish

lim sup 1 loga,(C) < sup[F(z) — I(x)].

n—oo T zeC
Now,
log Q,(C) = loga,(C) — log ay,
and we get
lim sup 1 log Q,(C) < sup[F(z) — I(z)] — sup[F(z) — I(x)] = — inf J(z)
n—oo T zeC zeX zcC

This gives us the upper bound and the lower bound is just as easy and is left as an
exercise. g



