
Random time change.

If P is a solution to the martingale problem for

L =
1

2

d∑

i,j=1

ai,j
∂2

∂xi∂xj

+

d∑

j=1

b(x)
∂

∂xj

we can make a transformation by rescaling time y(t) = (T2x)(t) = x(2t). Then the new
process Q = PT−1

2 will be a solution to the martingale problem for 2L. We just need
to observe that if M(t) is a martingale with respect (Ft, P ), for any c > 0, M(ct) is a
martingale with respect (Fct, P ) and all we have done is change the time scale. There
is the possibility of changing the time scale differently at different points. Let c(x) be a
measurable function that satisfies 0 < c1 ≤ c(x) ≤ c2, and we run the clock at speed 1

c(x)

when the trajectory is at x. So at time t the clock shows

σt =

∫ t

0

1

c(x(s))
ds

It will show a time of t at time τt which is a solution is the solution of

στt =

∫ τt

0

1

c(x(s))
ds = t

Then τt is a stopping time and the random time change

y(t) = x(τt)

defines a map Θc(·) : C[[0,∞);Rd] → C[[0,∞);Rd]. It is easy to check that

Θc1(·)Θc2(·) = Θc1(·)c2(·)

If X(t) is a martingale with respect to (Ω,Ft, P ) and τt is an increasing family of stopping
times then Y (t) = X(τt) is a martingale with respect to (Ω,Fτt, P ). It follows that
Q = PΘ−1

c(·) is a solution for

(L̂u)(x) = c(x)(Lu)(x)

The steps are reversible and Θc(·) is an invertible map with Θ 1
c(·)

being the inverse. In

particular if 0 < c1 ≤ c(x) ≤ c2 < ∞, P is a solution for L if and only if Q = PΘ−1
c(·) is

a solution for c(x)L. Existence or uniqueness for L implies and is implied respectively by
Existence or uniqueness for c(x)L

This proves in one dimension existence and uniqueness for any

L =
1

2
a(x)

∂2

∂x2
+ b(x)

∂

∂x

provided 0 < c1 ≤ c(x) ≤ c2 < ∞ and |b(x)| ≤ C < ∞.
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Special situation in d=1,2.

We consider time dependent operator in 1-d

1

2
a(t, x)

∂2

∂x2

where a(t, x) is measurable and satisfies 0 < c1 ≤ a(t, x) ≤ c2 < ∞. We need to be able to
solve for t ≤ T

∂u

∂t
+

1

2
a(t, x)

∂2u

∂x2
= f(t, x); u(T, x) = 0

in W 1,2
p for some p such that

‖u‖∞ ≤ C‖u‖1,2p

For the heat equation ut +
C
2
uxx = f p(t, x, y) = 1√

2πCt
e−

(x−y)2

2Ct

sup
0≤s≤T,x∈R

∫ T

s

∫

R

|p(t− s, x, y)|2dtdy = sup
0≤s≤T

∫ T

s

1

2πCt

√
πCt dt = c(T ) < ∞

We can afford to take p = 2 for the perturbation.

If ut +
C
2 uxx = f then iτ û(τ, ξ)− Cξ2

2 = f̂(τ, ξ). We meed to invert Dt +
1
2a(t, x)Dxx on

L2[[0, T ]×Rd] and get a u ∈ W
1,2
2 on [[0, T ]×Rd]. Since | ξ2

C
2 ξ2−iτ

| ≤ 2
C
,

[Dt +
1

2
a(t, x)Dxx]

−1 = [Dt +
C

2
Dxx +

1

2
[a(t, x)− C]Dxx]

−1

= [Dt +
C

2
Dxx]

−1[I + [
1

2
[a(t, x)− C]Dxx][Dt +

C

2
Dxx]

−1]−1

More over [| 1
2
[a(t, x)− C] 2

C
| ≤ C−c1

C
< 1. Rest is as before. p = 2 works

d=2.

We consider
1

2

2∑

i,j=1

ai,j(x)Dxi
Dxj

We can do a random time change and assume that the trace of {ai,j(x)} = a1,1(x) +
a2,2(x) ≡ 2 or (a1,1(x)− 1) = (1− a2,2(x)). We also have an estimate of the form

‖u‖∞ ≤ C|λu− ∆

2
u‖2

because

u(x) =

∫
e−i<x,ξ>

(λ+ ξ2)
2

f̂(ξ)dξ

2



and (λ + ξ2

2 )
−2 is integrable. It is enough to work on L2. For some ρ > 0 and c > 0

|a1,2(x)|2 ≤ (1− ρ)a1,1(x)a2,2(x) and a1,1(x) ≥ c and a2,2(x) ≥ c.

‖[a1,1(x)− 1]uxx + 2a1,2uxy + [a2,2(x)− 1]uyy‖22
= ‖[a1,1(x)− 1][uxx − uyy] + 2a1,2(x)uxy‖22
≤

∫
[[a1,1(x)− 1]2 + a21,2(x)][(uxx − uyy)

2 + 4u2
xy]dxdy

≤ sup
x
[[a1,1(x)− 1]2 + (1− ρ)a1,1(x)a2,2(x)]

∫
[(uxx − uyy)

2 + 4u2
xy]dxdy

≤ sup
x
[(a1,1(x)− 1)2 + a1,1(x)(2− a1,1(x)]− ρa1,1(x)a2,2(x)]

×
∫
[(uxx − uyy)

2 + 4u2
xy]dxdy

≤ (1− ρc2)

∫
[(uxx − uyy)

2 + 4u2
xy]dxdy

= (1− ρc2)

∫
[(ξ2 − η2)2 + 4ξ2η2]|f̂(ξ, η)|2]dξdη

= (1− ρc2)‖∆̂f‖22

In 1-d, the S.D.E
dx(t) = σ(x(t))dβ(t)

has a unique sloution provided σ is Hölder continuous of exponent 1
2 . If we have two

solutions, x(t) and y(t), z(t) = x(t)− y(t) stsfies

dz(t) =

∫ t

0

[σ(x(s))− σ(y(s))]dβ(s)

We take a function φ(z) ≥ 0, φ(0) = 0 that is twice differentiable and

E[φ(z(t))] =
1

2
E

[∫ t

0

[σ(x(s))− σ(y(s))]2φ′′
ǫ (z(s))ds

]

Take φǫ(z) = (ǫ2+z2)
1
2 and let ǫ → 0. LHS goes to E[|z(t)|].Since |σ(x)−σ(y)|2 ≤ C|x−y|

one checks that |φ′′
ǫ (z)|z| → 0 pointwise and is uniformly bounded. Bounded convergence

theorem completes the proof.
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