Problems for the week of Oct 20. Due Oct 27

1. If $f(z)=u(x, y)+i v(x, y)$ is analytic in the entire plane show that it is an odd function, i.e. $f(z)+f(-z)=0$ if and only if $v=0$ on the real axis and $u=0$ on the imaginary axis.
2. If $f(z)$ is analytic in $|z| \leq 1$ and $f(z) \mid=1$ on $|z|=1$ show that f is a rational function, i.e. of the form $\frac{P}{Q}$ where P and Q are polynomials.
3. The Fibonacci numbers c_{n} are defined by $c_{0}, c_{1}=1$ and $c_{n}=c_{n-1}+c_{n-2}$ for $n \geq 2$. Determine the function

$$
c(z)=\sum_{0}^{\infty} c_{n} z^{n}
$$

as a rational function and use it to find a formula for c_{n}.
4. Show that the Laurent series for $f(z)=\left(e^{z}-1\right)^{-1}$ is of the form

$$
f(z)=\frac{1}{z}-\frac{1}{2}+\sum_{k=1}^{\infty}(-1)^{k-1} \frac{B_{k}}{(2 k)!} z^{2 k-1}
$$

